-
- ARIS-RP1: Design and Characterization of Ultra-Large-Scale Intelligent Electromagnetic Surfaces Using Deep Learning
- ARIS-RP2: Reprogrammable Meta-optics for Information Multiplexing
- ARIS-RP3: Making Wireless Communication Environment Smart via Reconfigurable Intelligent Surfaces (RIS): A New Network Optimization Perspective
-
- FCT-RP1: Practical Data Storage and Computation in DNA Molecules
- FCT-RP2: Amorphous-Oxide-Semiconductor Thin Film Transistors and DRAM Cross-bar to Enable 3D Monolithically Integrated Architecture for Near/In-memory Computing
- FCT-RP3: Neural-like Computing System based on Superparamagnetic Tunnel Junctions
-
- HFM-RP1: Wearable Microneedle Patch for the Minimally Invasive Wireless Continuous Glucose Monitoring
- HFM-RP2: On-body computing for Next-generation Wearable Systems
- HFM-RP3: A Novel Optical Biometer to Monitor Myopia Progression in Children.
- HFM-RP4: Magnetoplethysmograph for Continuous Heart Rate and Blood Pressure Monitoring
- HFM-RP5: Manufacturing of Artificial SKin Integrated Network (SKIN) for Healthcare and Fitness Monitoring
- HFM-RP6: Radio-frequency Textile Sensors for Wearable and Ambient Health Monitoring
-
- ADT-RP1: Development of High Precision Additive Manufacturing for Integrated Complex Molding Applications
- ADT-RP2: Low Loss and Tunable Ferroelectrics for Sub-6G Applications
- ADT-RP3: Redox-mediated Flow Battery for Household Energy Storage
- ADT-RP4: Development of Nature-inspired Multiscale Composite Materials for High Strength and Low Loss Applications
-
- WDSS-RP1: Enabling Continuous and Realtime Monitoring of Human Vitals through Battery-free Tunnel Diode based Sensors
- WDSS-RP2: Wireless Communication and Radar Sensing Fusion Based Indoor Localization
- WDSS-RP3: Multi-parameter Sensing Platform for Proactive Hypertension Diagnostics Using Artificial Intelligence
- WDSS-RP4: LightChips: Light-Based Integrated Cloud-to-Edge Communications, Sensor Node Wake-Up and Indoor Positioning for mm-Scale Purely-Harvested Systems
Healthcare and Wellness Monitoring
AI-assisted Infrared Nano-Opto-Surface-Enhanced-Sensor (IR-NOSES) Chips for Early-stage Diagnosis and Healthcare Application