

Unintended WSH risks arising from climate change adaptation and mitigation efforts

Mr. Tianxiang Lan, Dr. Yang Miang Goh, Dr. Olivia Jensen, Dr. Ashan Senel Asmone

World Engineers Summit 2021

- Introduction
- Methods
- Results
- Dfs Recommendations

Ministry of Foreign Affairs Singapore. (2018). *2018 is the Year of Climate Action in Singapore*. Ministry of Sustainability and the Environment. (2021). *Singapore Green Plan 2030*.

Singa

CLIM

GREEN PLAN

© Copyright National University of Singapore. All Rights Reserved.

Climate action and built environment

Climate change mitigation

Climate change adaptation

Image Credit: Tanaka, J. (2008). *Green building*. USAID Asia. (2018). *Big C celebrates first solar rooftop system*.

Step 1: A systematic literature review

- Known WSH risks in FM jobs
 - Screen the WSH hazards to focus on
- Known WSH risks to be induced/worsened by climate actions
- English language, journal articles, past 10 years

Step 2: Site observation

- Green building
- Green features new loci of WSH hazards?

14 Lit review results: WSH hazards in FM

- Exposure to harmful chemical or biological substances
 - Disinfectants, pesticides, pathogen et cetera.
- Hazards causing physical injuries
 - Fall from height, tool/machine use, et cetera.

04 Lit review results: WSH hazards in climate actions

- Resources efficiency (recycling)
 - Exposure to pathogens, heavy metals, and industrial chemicals
- Energy transition
 - Wind & solar: fall from height, electrocution.
 - Biofuel: exposure to harmful chemical or biological substances, fire and explosion
- Mostly focusing on climate change mitigation

Green Features	Purpose	Additional WSH hazards introduced
Overhanging Roof	Solar shading for thermal comfort (adaptation & mitigation)	Increased working from height
Double Façade	Insulation for thermal comfort (adaptation & mitigation)	Increased working from height
Rooftop Solar Panels	To achieve net-zero energy consumption (mitigation)	-Exposure to weather, lightning; -Glaring from the solar panels; -Electrical hazard; -Increased working from height
Greenery within the building	Thermal comfort (adaptation); aesthetics	-Exposure to landscaping chemicals and soil; -Bites from animals and insects

O4 Site observation: additional notes

- Vertical greenery is usually more hazardous
 - Fall from height, exposure to weather elements
- More hazards detected related to adaptation
 - Current literature overlooked FM

- Prioritise hazard elimination
 - Shift vertical greenery into sheltered floor area

- Height access overhanging roof, green walls
 - Design permanent structure to assist access

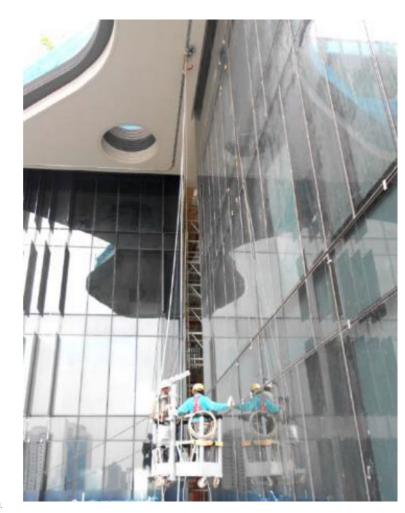


Image Credit: Building and Construction Authority. (2017). *Facade Access Design Guide*.

- Height access overhanging roof, green walls
 - Design permanent structure to assist access

- Height access overhanging roof, green walls
 - Design permanent structure to assist access
- Rooftop solar, green roof
 - Multiple protective structure: parapet wall, guardrail, anchorage

04 Conclusion

- Neglect of climate change adaptation hazard in the literature
- DfS recommendation elimination is priority
- Use permanent structure to assist height access
- Weather-conscious design

Thank You!

Mr. Tianxiang Lan, Dr. Yang Miang Goh*, Dr. Olivia Jensen, Dr. Ashan Senel Asmone *<u>bdggym@nus.edu.sg</u>