SEMINAR ANNOUNCEMENT

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING COLLEGE OF DESIGN AND ENGINEERING Website: https://cde.nus.edu.sq/ece

Area: Microelectronic Technologies & Devices

Host: Dr. Zhou Hong

ТОРІС	:	LWIR Nanoantenna-Mediated Graphene Photodetectors for Sensitive Polarimetry
SPEAKER	:	Mr. Xie Junsheng Graduate Student, ECE Dept, NUS
DATE	:	Tuesday, 27 September 2022
ТІМЕ	:	1:30PM to 2:00PM
WEBINAR	:	Join Zoom Meeting: <u>https://nus-sg.zoom.us/j/85838234411?pwd=WkVwbXhiSkpHR0pFYIFrSUV5cTRxUT09</u> Meeting ID: 858 3823 4411 Passcode: 360092
ARCTRACT		

ABSTRACT

Polarimetry base on 2D materials attracts a lot of interest as their intriguing optoelectronics and potential for on-chip miniaturization. However, many 2D materials suffer from low absorption rate in long-wave infrared (LWIR) due to their intrinsic bandgaps. Here, we report a LWIR nanoantenna-mediated graphene photodetector with polarization sensitive photoresponse utilizing bulk photovoltaic effect (BPVE). Our device shows a high responsivity and a low noise equivalent power under zero source-drain bias. The nanoantenna-mediated photodetectors show a sensitive polarization dependence in the LWIR range. Furthermore, a negative polarization ratio is observed in our device, which allows subtle measurement of polarization angle perturbation down to $0.04^{\circ} \text{Hz}^{-1/2}$. Our results pave the way to on-chip optical integration.

BIOGRAPHY

Xie Junsheng received his Bachelor degree from Nanjing University, Nanjing, China. He is now a Ph.D. student at the Dept of ECE of NUS. His research interests mainly focus on Mid-IR photodetectors and sensors.

https://cde.nus.edu.sg/ece/highlights/events/