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Abstract

Process monitoring and fault diagnosis using profile data remain an important prob-

lem in statistical process control (SPC). It is particularly challenging with multichannel

profiles. This article proposes a novel scheme for Phase II monitoring of multichannel

profiles. The proposed method integrates the exponentially weighted moving average

(EWMA) scheme with multichannel functional principal component analysis (MFPCA)

to obtain the charting statistics. Their control limits can be effectively computed by

the Markov chain method. Moreover, we provide a natural diagnostic procedure to lo-

cate the possible change point once the chart is out-of-control. Our proposed method is

demonstrated to be effective and efficient through simulation results and an industrial

case study from a multi-operation forging process.

Keywords: EWMA; Functional data analysis; Multichannel functional component

analysis; Markov chain method; Statistical process control

1 Introduction

Because of advanced sensing technologies in complex manufacturing systems, large amounts

of sophisticated and real-time data become available. These data provide unprecedented

opportunities to monitor and improve the product quality or process efficiency, yet they

also pose significant challenges to conventional statistical process control (SPC) methods.

Different from univariate or multivariate quality characteristics commonly used in the lit-

erature (see, e.g., Montgomery 2007, Qiu 2013), in many SPC applications, their quality is
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characterized by the functional relationship between a response variable and one or more

explanatory variables. This functional relationship is often referred to as a profile, and the

SPC problem for profiles is known as profile monitoring and diagnosis. See Woodall et al.

(2004), Woodall (2007) and Noorossana et al. (2011) for a nice overview.

Because of its importance, extensive research works focusing on profile monitoring have

been recently studied. The literature can be divided into two categories. The first category

characterizes the profile using parametric models, such as linear and nonlinear models. Then

they monitor the parameters of the models, estimated from the profile data (see, e.g., Kang

and Albin 2000, Kim et al. 2003, Zou et al. 2007, Jensen et al. 2008). The second

category uses nonparametric models, including wavelet methods (Chicken et al. 2009) and

nonparametric smoothing methods (Zou et al. 2008; Qiu et al. 2010) among many others,

to characterize the profile. Then the profile monitoring is translated to the monitoring of

features derived from the models, e.g., residuals or projection coefficients.
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Figure 1: Left panel: A forging machine with four strain gages. Right panel: A sample of
four-channel profiles.

Despite their significance, most existing profile monitoring methods are only applicable

to a single profile data. In some industrial applications, however, product quality is charac-

terized by profile data collected from multiple channels. For example, in the multi-operation

forging process with transfer or progressive dies, as shown in the left panel of Figure 1, ton-

nage forces exerted on all dies are measured by four strain sensors mounted on four columns

of the press. Each sensor records the tonnage force at a predefined equal sampling interval of

a rotational crank angle. This results in multichannel profile data shown in the right panel

of Figure 1. The four channels of profiles collectively indicate the quality of a particular
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forging operation. See Section 4 for more details of this example.

Because of the inherent dependence among multichannel profiles, monitoring profile data

in each single channel separately using aforementioned methods might not be effective. It

is expected that by taking cross correlations among multichannel profiles into consideration,

the profile monitoring could become more sensitive to a variety of shifts. However, research

on the monitoring and diagnosis of general multichannel profiles is still limited. Among them,

Noorossana et al. (2010) discussed multivariate linear profile monitoring in Phase I analysis,

mainly based on the ordinary least square estimation. Zou et al. (2012) focused on the

Phase II monitoring for multivariate linear profiles by using the LASSO-based multivariate

SPC techniques. However, both approaches imposed linear assumptions on the profiles, and

might not be generally applicable.

Among the research focusing on general multichannel profiles, Lei et al. (2010) combined

multichannel profiles into a single profile by summing them up. Clearly, this approach does

not utilize valuable cross-correlation information among channels. Chou et al. (2014) de-

veloped a process monitoring strategy for multiple correlated nonlinear profiles. They used

B-splines to extract the mean of each profile, and monitored the combined coefficients of

multichannel profiles. Another related approach is to combine multichannel profiles into a

high-dimensional vector, and to apply dimension reduction methods, such as the principal

component analysis (PCA) to extract features and construct monitoring statistics. Such vec-

torization and dimension reduction is also referred to as Vectorized-PCA (VPCA). However,

VPCA breaks the correlation structure in the original data and loses some useful represen-

tations that can be obtained in the original form. Moreover, it also suffers from “the curse

of dimensionality” because it ignores the smoothness nature of functional profiles, making it

less effective when the number of profiles or the number of sampling points is large. More

recently, Paynabar et al. (2015) used a projection method called Multivariate Functional

Principal Component Analysis (MFPCA) to extract informative features from multichannel

profiles and to incorporate theses features into a change-point model for Phase-I analysis.

The main goal of this paper is to develop a Phase II monitoring approach for multichannel

profiles. The proposed approach applies the functional principal components to obtain a set

of extracted features that can be effectively used to characterize process variations and to

construct an exponentially weighted moving average chart (EWMA). It possesses a good

property that the IC average run length can be calculated via a one-dimensional Markov
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chain model so that the control limit can be easily obtained. The effectiveness of the proposed

method is shown via both simulation studies and a real-world case study in a multi-operation

forging process. The remainder of the paper is organized as follows. Section 2 presents

the proposed method for monitoring multichannel profiles in detail. Section 3 evaluates

the performance of our proposed scheme and compares it with some alternatives through

simulations. Section 4 revisits the industrial example in Figure 1 to illustrate the step-by-

step implementation of the proposed approach. Section 5 concludes the article with several

remarks.

2 Methodology

The Phase II monitoring and diagnosis procedure developed in this paper consists of five

parts. In Section 2.1, the MFPCA is reviewed. The MFPCA is applied to transform the

functional data, which has infinite dimension in nature, into a few components that can rep-

resent the main structure of multichannel profiles well. Then, these multivariate functional

principal components are used to construct an EWMA control chart, as derived in Section

2.2. Section 2.3 discusses the practical guidelines for its design and implementation, espe-

cially the parameter estimations in Phase I analysis. A diagnostic approach is proposed to

identify the change point of the process in Section 2.4. At last, an extension of the proposed

method is discussed in Section 2.5.

2.1 A Brief Review of MFPCA

Motivated by the forging process example, to be specific, we assumeX(u) = {X1(u), . . . , Xp(u)}

is the p-channel profiles, following the model

X(u) = µ(u) + Y (u), (1)

where µ(u) denotes the p-dimensional mean function and Y (u) is the stochastic error with

E[Y (u)] = 0, u is the index, typically standing for time or space. We let u ∈ T = [0, 1]

without loss of generality. The profile X(u) has an infinite dimension in nature, making

it difficult to monitor directly. The MFPCA is designed to reduce its dimensionality and

extracting a few major and representative features for process monitoring. Here we briefly

review the MFPCA and introduce necessary notations.
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Similar to conventional principal components analysis, which is based on the covari-

ance matrix, the MFPCA is based on the covariance function of Y (u). Let c(u, u′) =

E {〈Y (u),Y (u′)〉} be the “overall covariance” function of vector-valued random function

Y (·) for u, u′ ∈ T , where we use a straightforward definition of the inner product between

multi-dimensional functions, i.e., 〈f , g〉 =
∑p

j=1
fjgj introduced by Dubin and Müller (2005).

Then, the spectral decomposition of c(u, u′) is given by

c(u, u′) =

∞
∑

k=1

λkvk(u)vk(u
′).

Here λk and vk(·) denote the eigenvalues and eigenfunctions, respectively. They satisfy
∫

1

0
c(u, u′)vk(u

′)du′ = λkvk(u), k = 1, 2, . . .. Based on this eigen decomposition, an inte-

grable vector-valued random function Y (u) can be represented by the set of eigenfunctions

as Y (u) =
∑

1≤k<∞ ξkvk(u), where the sequences ξk =
∫

1

0
Y (u)vk(u)dt, k = 1, 2, . . . are i.i.d.

p-variate random variables with mean 0 and covariance matrix Σk. It is easy to show that

σ2
kj = E[ξ2kj], where ξkj is the jth component of ξk, and λk =

∑p
j=1

σ2
kj. Note that in practice,

only a few eigenvalues and eigenfunctions are required to capture the important variations

of a sample of multichannel profiles.

The MFPCA model discussed above assumes that all functions from the p channels share

a common set of eigenfunctions, and their inter-dependence are essentially described by the

correlations among components of ξk. This assumption is reasonable when profiles from

different channels exhibit similar patterns like those in Figure 1, and thus is not restrictive

in many applications. In particular, when p = 1, MFPCA reduces to the widely used

univariate FPCA as discussed in Ramsay and Silverman (2005). In this situation, ξk is

a random variable with mean 0 and variance λk instead of a random vector with mean

0 and covariance matrix Σk. Therefore, our method also applies to single-channel profile

monitoring. See some simulation results when p = 1 in Section 3.

2.2 Control Scheme for Monitoring Multichannel Profiles

Let us consider the Phase II monitoring for multichannel profiles. We assume the profile

observations are collected sequentially according to the following model

X i(u) =

{

µ(u) + Y i(u), for i = 1, . . . , τ,

µ(u) + δ(u) + Y i(u), for i = τ + 1, . . . ,
(2)
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where τ is the unknown change point and µ(u) is the in-control mean function of profiles.

We would like to focus on detecting any change δ(u) in the mean function as quickly as

possible. Following the convention in the literature, in Phase-II analysis, the in-control

parameters including the mean function µ(u), eigenfunction vk(u) and covariance matrix Σk

are assumed to be known; or equivalently, the in-control data set in Phase I is sufficient to

estimate the model well. Some discussions on the estimation of IC parameters are presented

in Section 2.3.

Without loss of generality, we assume the in-control mean function µ(u) = 0. Otherwise,

we can transform X i(u) to X i(u) − µ(u) to make the assumption valid. In the light of

MFPCA, for on-line collected observations X i(u), i = 1, 2, . . ., we can reduce their dimension

and extract the crucial information by projecting them on the principal functions. The

projections (or called PC-scores) corresponding to the largest d eigenvalues are obtained by

ξik =

∫

1

0

X i(u)vk(u)du, k = 1, . . . , d.

If the multichannel profile sample X i(u) is from the in-control process, ξik are uncorrelated

with mean 0 and covariance matrix Σk. In particular, if X i(u) follows a Gaussian process,

the PC-scores ξik
i.i.d
∼ N(0,Σk). With above projections, one can see ξik, k = 1, . . . , d

are ideal indicators, which have relatively low dimension yet are capable of capturing the

variation information of the multichannel profile. As a result, we can define an EWMA

sequence based on ξik as

ηik = (1− w)ηi−1,k + wξik, k = 1, . . . , d, (3)

where the initial vector η0k is usually taken to be 0 of p dimension, and 0 < w ≤ 1 is the

smoothing constant. The proposed control chart triggers a signal if

Qi =
2− w

w

∑

1≤k≤d

ηT

ikΣ
−1

k ηik > L, (4)

where L > 0 is the control limit chosen to achieve a specified IC average run length (ARL0).

Note that the weighted average in (3) reflects that: the more recent observations offer more

information for identifying the change and thus have higher weights. Hereinafter, this chart

is referred to as principal components based EWMA chart, or PCEWMA for brevity. In

what follows, we summarize some useful properties of PCEWMA chart:
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(1) When the process is IC, under some mild conditions, the asymptotic distribution of

the PCEWMA statistics Qi is χ2
pd (as w → 0). The proof of this result is straightforward

based on the proof of Proposition 3 in Zou and Tsung (2011) and is omitted here.

(2) The sequence {Q1, . . . , Qi} forms a Markov chain if the underlying distribution of ξik

follows the class of elliptical distributions.

These results are particularly useful in determining the control limit L, whose details are

presented in the Appendix. To sketch the idea, we represent the charting statistics as

Qi = ζT

i Σ̃
−1ζi,

where ζi = (ηT

i1, . . . ,η
T

id)
T and Σ̃ = w

2−w
diag(Σ1, . . . ,Σd). Under this representation, ζi is

a pd-dimension vector, while the form of the statistics Qi is analogous to that of MEWMA

statistics with dimension pd used by Zou et al. (2007). That is, similar to MEWMA, we

can easily prove that PCEWMA statistics Qi forms a Markov chain. As a result, the IC

ARL of PCEWMA can be approximated by using Markov chain method which is developed

by Runger and Prabhu (1996). Table 1 provides the control limits of PCEWMA chart for

commonly used combinations of w, d and IC ARLs under p = 4. The limits are obtained using

a Markov chain with m = 200 transition states, and all the parameters are assumed known.

We have conducted simulations to verify the accuracy of the Markov chain approximation,

and the results are very satisfactory as long as m > 50. The simulation results shown in the

next section demonstrate that the IC run-length performance of PCEWMA is quite robust

under various process distributions and therefore, the control limits tabulated in Table 1 can

be used in practical applications.

Like the MEWMA chart, the w in PCEWMA should be chosen to balance the robustness

to non-normality and the detection ability to various shift magnitudes (c.f., Stoumbos and

Sullivan 2002). In general, a smaller w leads to a quicker detection of smaller shifts (c.f.,

e.g., Lucas and Saccucci 1990; Prabhu and Runger 1997). This statement is still valid for

PCEWMA. Based on the simulation results in Section 3, we suggest choosing w ∈ [0.05, 0.2],

which has satisfactory performance in practice.

2.3 Guidelines for Design and Implementation

In Section 2.2, it is assumed that the IC parameters, i.e., the mean function µ(u), the

eigenfunctions vk(u) and the covariance matrix Σk are known or, equivalently, that they are
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Table 1: The control limits of the PCEWMA chart for IC ARL=200, 370 and 500 with
various values of d and w under p = 4

IC ARL w d = 2 d = 3 d = 4 d = 5 d = 7 d = 10 d = 15 d = 20

200 0.3 21.396 27.707 33.643 39.343 50.286 65.988 91.074 115.363

0.2 20.867 27.130 33.025 38.689 49.567 65.185 90.154 114.400

0.1 19.541 25.659 31.430 36.983 47.666 63.068 87.762 111.250

0.05 17.713 23.587 29.143 34.475 44.569 58.722 80.991 101.946

370 0.3 23.131 29.634 35.734 41.579 52.775 68.798 94.326 118.992

0.2 22.678 29.147 35.217 41.036 52.184 68.145 93.575 118.200

0.1 21.515 27.874 33.850 39.583 50.575 66.334 91.445 115.124

0.05 19.894 26.064 31.845 37.315 47.382 61.057 82.457 102.840

500 0.3 23.958 30.548 36.722 42.634 53.945 70.115 95.845 120.682

0.2 23.536 30.098 36.247 42.135 53.405 69.521 95.159 119.947

0.1 22.439 28.904 34.969 40.782 51.907 67.802 92.976 116.560

0.05 20.903 27.191 33.041 38.514 48.437 61.840 82.909 103.104

well estimated from a sufficiently large reference dataset. This section provides guidelines

on how to obtain the reliable estimations of these parameters for Phase II analysis.

Intuitively, given the IC sample size m0, the mean function µ(u) can be estimated by

X̄(u) = m−1

0

∑m0

i=1
X i(u). Further, we can get the estimation of the covariance function

c(u, u′) = E{〈Y i(u),Y i(u
′)〉} by the method of moments as

c̃(u, u′) =
1

m0

m0
∑

i=1

〈{X i(u)− X̄(u)}, {Xi(u
′)− X̄(u′)}〉. (5)

Consequently, the corresponding estimators of eigenvalues λk and eigenfunctions vk(·) de-

noted by λ̃k and ṽk(·), respectively, are calculated by decomposing

∫

1

0

c̃(u, u′)υ̃k(u
′)du′ = λ̃kυ̃k(u), u ∈ T , k = 1, 2, . . . .

Furthermore, the covariance matrix of ξik, i.e., Σk can be estimated by

Σ̃k =
1

m0

m0
∑

i=1

∫

1

0

{X i(u)− X̄(u)}υ̃k(u)du

∫

1

0

{X i(u)− X̄(u)}Tυ̃k(u)du.

Under some mild conditions, the foregoing estimators are consistent.

In practice, a functional profile is always measured at an ordered dense grid of points

within an interval of finite length (Ramsay and Silverman 2005). That is, each observation
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X i(u), is only observed at points uij : j = 1, · · · , ni. If uij are the same across different

observations, i.e., uij = uj and ni = n, we can solve the MFPCA by applying traditional PCA

to the n× p matrix of all observed data. To be more specific, instead of the the covariance

function c̃(u, u′) obtained in (5), we can obtain the covariance matrix C̃ = (C̃hl)n×n, which

are discrete evaluations of c̃(u, u′) at n points u1, . . . , un. Its (h, l)th component can be

estimated by

C̃hl =
1

m0

m0
∑

i=1

p
∑

j=1

{Xij(uh)− X̄j(uh)}{Xij(ul)− X̄j(ul)}, (6)

where X̄j(ul) = m−1

0

∑m0

i=1
Xij(ul). Then we can decompose C̃ directly using PCA and

obtain the corresponding estimators of eigenvalue λ̃k and eigenfunctions ṽk(u) evaluated at

u1, . . . , un. Hence, the (h, l)th element of Σ̃k, σ̃khl, can be estimated by

σ̃khl =
1

m0

m0
∑

i=1

[

n
∑

j=1

{Xih(uj)− X̄h(uj)}υ̃k(uj)
n

∑

j=1

{Xil(uj)− X̄l(uj)}υ̃k(uj)

]

. (7)

If the sampling grid is sparse or the grid points are unequally spaced, one can smooth the

individual profile data first by using any smoothing techniques such as splines or kernel re-

gression methods, and then apply the method above on the predicted (interpolated) values

at an equally-spaced grid of points. See Ramsay and Silverman (2005) for some detailed dis-

cussion. In what follows, we provide some guidelines on the implementation of the methods

in practice.

On determining Phase I sample size m0. It should be pointed out that when IC sample

size m0 is not large (say, m0 ≤ 2000; see Table 3 in Section 3), there would be considerable

uncertainty in the parameter estimation, which in turn would distort the IC run length

distribution of PCEWMA control chart. From the results in Section 3, we can see that, as

long as m0 ≥ 2000, the ARL0 values are quite stable in various cases. Hence, we suggest

collecting at least 2000 IC samples before Phase II process monitoring. When a sufficiently

large reference dataset is unavailable, self-starting methods that handle sequential monitoring

by simultaneously updating parameter estimates and checking for OC signals have been

developed accordingly for conventional SPC methods (see, e.g., Hawkins 2007, 2008). The

further studies, including thorough discussion of the effect of m0 on the PCEWMA scheme

and the corresponding self-starting charts, are subjects of future research.

On choosing d. Note that d is the number of eigenfunctions vk(u) used for projection, or

equivalently the number of principal components considered. In Phase II monitoring, we also
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assume d is unchanged and has been well estimated in Phase I. There are many approaches

proposed in the literature, with respect to the choice of d. One approach, which is adopted in

our numerical study, is to determine d based on the percentage of total variation explained

by the extracted PC-scores. Another approach is to use the pseudo Akaike information

criterion (AIC) and the cross-validation procedure (see Yao et al. 2005) to determine d.

On grid points n. In practice each profile is measured at a set of grid points. The

number and positions of the grid points for Phase I and Phase II should be properly chosen

to describe the functional curve well. We strongly suggest choosing the same number and

positions for Phase I and Phase II samples, i.e., uij = uj, j = 1, . . . , n. In this case, the PC-

scores ξik can be directly approximated by ξik ≈
∑n

j=1
X i(uj)vk(uj), k = 1, . . . , d. Based on

extensive simulations, we recommend the number n of grid points in each multichannel profile

should not be fewer than 50. Engineers can also take the related engineering knowledge into

consideration, such as the smoothness and variation of the profile curves, to determine the

appropriate n.

2.4 Diagnostic Aids in Multichannel Profile Monitoring

In SPC, besides quickly detecting a process change, it is also critical to determine when

the change occurs after an OC signal is triggered. A diagnostic aid to locate the possible

change point and to isolate the type of changes in the profile can help an engineer quickly

and easily identify the root cause of the problem. In this section, we discuss the diagnosis

of multichannel profiles.

Identifying the location of the change point is the critical step in our diagnostic procedure.

Because the change point separates the OC profiles from IC profiles, locating the change point

can make an accurate inference about features of a particular change. To identify the change

point, a distance based principal components is used. Here we assume that an OC signal is

triggered at the mth profile, by the PCEWMA chart. Our suggested estimator of the change

point, τ , is given by

τ̂ = arg max
1≤l<m

D(l, m). (8)

where D(l, m) =
∑

1≤k≤d ζ̂
T

lkΣ
−1

k ζ̂ lk is the sample distance between two groups separated at

the lth sample, and

ζ̂ lk =

√

l(m− 1)

m

∫

1

0

{

1

l

l
∑

i=1

X i(u)−
1

m− l

m
∑

i=l+1

X i(u)

}

vk(u)du.
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Intuitively, if l is the change point, the distance D(l, m) should be large. The foregoing

formulation is similar to that of Zou et al. (2008), which used a nonparametric maximum

likelihood estimator. Under certain conditions, we can establish the consistency of the change

point τ̂ , i.e., |τ̂ − τ | = Op(1).

After detecting the change point, an engineer may care about the following problems:

which channel(s) of the profiles changes; what the OC mean function looks like, and how great

the difference between IC and OC models is. Using existing testing methods to address all the

issues seems inappropriate and infeasible. A closely related work is Zou et al. (2011), which

constructed a BIC criterion by generalizing the best-subset searching procedure. However,

since few OC samples are available before the chart signals an alarm, the effectiveness of

their method can hardly be guaranteed. We suggest that engineers plot the functional curves

of the average of (m − τ̂) multichannel profile samples and compare it with the IC profile

together, to offer a visual and practical interpretation of the aforementioned problems.

2.5 Extension of PCEWMA

Here, we discuss a possible extension of the PCEWMA chart to demonstrate its versatility.

In practice, shifts in the mean function will influence the correlation among the channels even

if Σk remains at its IC value. To detect the changes in the covariance matrix, we can extend

the multivariate exponentially weighted moving covariance matrix (MEWMC) proposed by

Hawkins and Maboudou (2008) to monitor the PC-scores ξik to construct control chart.

When the process is in control, the PC-scores are random vectors with 0 and covariance

matrix Σk. In particular, they follow the multinormal distribution when X i(u) follows a

Gaussian process. As a result, we can build an EWMA sequence based on ξik by

Sik = (1− w)Si−1,k + wξikξ
⊤
ik, k = 1, . . . , d

with S0k = Σk. When the process is in control, E(Sik) = Σk. Here, we apply the likelihood

ratio statistic to monitor the stability of the process using the statistics

Ti =
d

∑

k=1

{tr(Sik)− log |Sik| − p}

The proposed control chart for covariance matrix triggers a signal if Ti > Lc, where the

control limit Lc is chosen to achieve a specified IC ARL. It is noting that to obtain the

appropriate value of Lc is not an easy task, because the statistics Ti does not have a known
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standard distribution. Generally, we need to obtain Lc by simulations given design parame-

ters such as w, IC ARL.

It is often a good practice to simultaneously monitor the changes in both location and

scatter. We suggest constructing the EWMA scheme for covariance matrix in conjunction

with a PCEWMA to detect multichannel profile changes.

3 Numerical Performance Comparison

In this section, we evaluate the performance of this new scheme PCEWMA in detecting

the shift of multichannel profile model (2) through ARL comparisons. It is challenging to

compare the proposed method with alternative methods, since there is no obvious comparable

method in the literature. To evaluate the performance of the proposed PCEWMA, we follow

three related approaches for comparisons.

The first approach to monitor multichannel profiles is to stack up profiles from each

channel and transform them into a high-dimensional vector. One could then use the PCA

to the resulting vector and extract features to build a EWMA control chart. We refer this

method as Vectorized-PCA EWMA (VPEWMA). There are several issues in using VPCA

for the analysis of multichannel profiles. As mentioned before, this method breaks the

correlation structure in the original data, and loses the useful representations that can be

obtained in the original form. In addition, the efficiency of VPEWMA decreases since too

many grid points increase the dimension and accumulate large stochastic noise. See also

Paynabar et al. (2013) for related discussions. Another FPCA-based method is to use

standard FPCA on each individual channel to construct EWMA statistics, and to sum them

up to obtain the monitoring statistics. This method is referred to as sIPEWMA. However,

this approach fails to consider the correlation among the multichannel profiles. We also

consider the nonparametric method NEWMA (Zou et al. 2008), which was proposed for

single-channel functional profile. To adapt it to multichannel profile data, one could apply

NEWMA on profile from each channel and sum up their statistics. This method is referred

to as mNEWMA for brevity. It should be emphasized that NEWMA method assumed the

random noises are i.i.d normal at every grid point. This assumption neglects the continuity

of the functional curve, and might not be reasonable in practice. Furthermore, it does not

consider the correlation among profile channels either.

For simplicity and consistency with the literature, the change point is assumed to be
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Figure 2: The averages of 1000 curves of the first two changed channels generated from IC Model
and three OC Scenarios along with γ = 1, where the gray band is 95% IC confidence band.

τ = 0 for OC scenarios, and only cases with IC ARL0 = 200 are reported here. All the

results in this section are evaluated with 1000 replications. The number of profile channels

is set to p = 4 firstly. Following the general IC model X i(u) = µ(u) + Y i(u), where

u ∈ [0, 1], the IC mean functions are µ1(u) = u + 2u2 + sin(4πu), µ2(u) = 2u + 3 exp(−u)

and µ3(u) = µ4(u) = 0. We consider Y i(u) =
∑

4

k=1
ξikυk(u), where υk(u)’s are the first four

non-constant Fourier basis functions with a base period of 0.5, and ξik are p-dimensional

multivariate normally distributed vectors with mean zero and covariance (Σk)ij = k(σ)|i−j|.

The default σ = 0.8. In multichannel profile data, the size of covariance Σk corresponds to

the inter-relationship among the p profile channels.

The number and variety of OC models are too large to allow an all-encompassing and com-

prehensive comparison. We only choose three representative shift scenarios for illustration,

where γ is the magnitude of the shift. In all following OC scenarios, we set δ3(u) = δ4(u) = 0.

• Scenario 1: δ1(u) = γ(3u+ u2), δ2(u) = γ(u+ 3u2) for u ∈ [0, 1].

• Scenario 2: δ1(u) = γ sin(4πu), δ2(u) = γ cos(4πu) for u ∈ [1/4, 3/4].

• Scenario 3: δ1(u) = γexp(−u), δ2(u) = γ sin(4πu) for u ∈ [0, 1].

All the processes are sampled on a grid of n = 50 equispaced points in T = [0, 1]. The

averages of 1000 curves generated from true IC models and three OC curves with (γ = 1)

are depicted in Figure 2. We can observe that the average curves could capture the pattern
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Figure 3: OC ARL comparison of PCEWMA scheme with different smoothing parameters w under
Scenario 1-3.

of true functions. It should be emphasized that it is difficult to obtain control limits for

VPEWMA, mNEWMA and sIPEWMA methods for a given ARL0. Therefore, all control

limits are obtained through simulations, which makes them inapplicable in practice. For

mNEWMA chart, the bandwidth h, is chosen from (10) in Zou et al. (2008) with c = 1.0.

Before we compare the OC ARLs of our method with the others, we first study the

effect of the smoothing parameter w on the performance of PCEWMA. In Figure 3, the OC

ARL of PCEWMA under three scenarios with different smoothing parameters w = 0.2, 0.1

and 0.05 are compared. Form this figure, PCEWMA scheme with w ≤ 0.2 performs well

under different models. In particular, the PCEWMA scheme with larger w is superior to the

ones with smaller w in detecting large shifts, while the PCEWMA scheme with smaller w is

better than the ones with larger w in detecting small shifts. This result is consistent with

the analysis in Section 2.

Since VPEWMA scheme breaks the natural correlation among profiles from different

channels, while mNEWMA and sIPEWMA schemes entirely ignore the correlation, it is

important to study the influence of correlations on the OC performance. Figure 4 summarizes

the ARL values with high-level (σ = 0.8) and low-level (σ = 0.4) correlation in the covariance

matrix (Σk)ij = k(σ)|i−j|. From Figure 4, all plots indicate that the proposed PCEWMA

scheme has superior efficiency with both strong and weak between-profile correlations. In

addition, when σ becomes higher, both mNEWMA and sIPEWMA detect the shifts slower.
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VPEWMA scheme has the similar property like mNEWMA and sIPEWMA in Scenario 1

and 2. In contrast, our PCEWMA performs better with higher σ, because our model consider

the correlation information among channels effectively.

Then, we turn to Table 2, which compares OC ARL values of the proposed PCEWMA

scheme with VPEWMA, mNEWMA and sIPEWMA in various shift sizes when the smooth-

ing parameter w equals 0.2. Besides the ARLs, the corresponding standard deviation of the

run lengths (SDRL) are also included in Table 2 to give a broader picture of the run-length

distribution. Table 2 shows that our PCEWMA chart has superior efficiency in most cases.

Further, we also can find the advantage of PCEWMA becomes larger in detecting larger shift.

On the other hand, VPEWMA and sIPEWMA outperform the mNEWMA chart because

these two PCA-based methods captures some major information of multichannel profile to

some extent. Conversely, the mNEWMA chart is inefficient in detecting shifts in all scenarios.

This is because besides ignoring the correlation among channels, mNEWMA chart assumes

that the stochastic noise at every observation point is independent from each other. Their

direct comparisons with w = 0.1, σ = 0.8 are summarized in Figure 5, from which we can

see that PCEWMA significantly outperforms others in efficiency and sensitivity, especially

for large shifts.

As discussed earlier, PCEWMA can also work in monitoring single-channel profiles, i.e.

p = 1. In this situation, our proposed PCEWMA is equivalent to VPEWMA and sIPEWMA.

To demonstrate, we use the first channel profile samples under the previous simulation models

to compare the performance of the proposed PCEWMA scheme with NEWMA scheme (see

Zou et al. 2008). Figure 6 compares the OC ARLs of PCEWMA and NEWMA charts

under different scenarios with smoothing parameter w = 0.2 and 0.1. It clearly shows that

PCEWMA detects shift faster in all occasions than NEWMA, because of the independent

error assumption of NEWMA.

In all the simulations above, it is assumed that the IC parameters are known or, equiva-

lently, that they are estimated from a sufficiently large reference dataset. Here, we study the

performance of PCEWMA when this assumption is violated. Table 3 shows the IC ARLs

and SDRLs of PCEWMA under various smoothing parameters w when (µ(u),Σk, vk(u)) are

estimated from IC dataset with various historical sample sizes, m0. In each simulation, a

sample of m0 is firstly generated and the IC parameters are estimated based on this sample.

Then, an independent sequence of p multichannel profiles is generated and the correspond-
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Table 2: OC ARL and SDRL values for PCEWMA, VPEWMA, mNEWMA and sIPEWMA
with various shifts of size γ, w = 0.2 and ARL0 = 200 under Scenario 1-3.

PCEWMA VPEWMA mNEWMA sIPEWMA
Scenario γ ARL SDRL ARL SDRL ARL SDRL ARL SDRL

(1) 0 198 176 191 172 204 184 203 182
0.1 193 169 200 177 210 191 188 171
0.3 172 168 191 174 203 185 189 179
0.5 138 126 153 142 197 179 171 158
0.8 88.7 80.0 108 102 206 188 146 138
1 65.8 58.3 80.6 73.8 203 190 123 112
2 16.7 10.6 23.3 17.3 194 178 49.6 41.5
4 5.3 1.7 6.6 2.5 196 180 11.4 6.1

(2) 0 199 186 204 189 208 188 199 177
0.1 190 172 206 185 203 189 191 173
0.3 166 153 183 173 215 193 196 181
0.5 143 133 165 159 204 187 193 178
0.8 89.1 88.7 104 98.7 203 183 187 175
1 65.8 58.8 87.2 77.9 202 186 161 150
2 16.2 10.2 25.2 19.0 185 172 105 101
4 5.2 1.5 6.9 2.7 125 118 29.4 23.2

(3) 0 198 177 197 179 199 177 193 177
0.1 190 173 197 185 208 195 198 182
0.3 126 116 186 172 214 193 191 176
0.5 76.1 72.7 173 166 205 193 169 160
0.8 32.5 25.7 149 142 204 191 148 144
1 21.1 13.7 139 132 191 182 127 120
2 6.2 2.2 61.2 52.2 187 177 49.3 40.0
4 2.8 0.6 16.0 9.7 141 130 10.2 4.6

ing run lengths are obtained. From Table 3, we can find that when the IC sample size is

relatively small, the actual IC ARLs and SDRLs of the PCEWMA chart are both quite far

away from the nominal value 200; and as the IC sample size increases, the actual results are

closer to their nominal values. In this paper, we use m0 = 50000 IC samples to estimate the

IC parameters for the PCEWMA scheme in aforementioned simulations.

We also conducted simulations with various combinations of (Σk,vk(u),p,w) and other OC

settings. These simulation results, not reported here but available from the authors upon

request, also show the proposed PCEWMA chart works well. R codes for implementing the

proposed procedure are available in the Supplementary Material.
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Table 3: IC ARL and SDRL values of PCEWMA scheme with various Phase I sample sizes
m0.

w = 0.2 w = 0.1 w = 0.05
m0 ARL SDRL ARL SDRL ARL SDRL

50 56.2 50.8 70.5 60.3 86.6 69.6
100 105 100 117 105 130 109
200 135 125 143 129 157 134
300 152 144 163 145 167 141
400 164 151 169 154 174 149
500 170 157 170 150 179 151
750 182 166 185 164 185 158

1000 183 170 185 166 191 162
1500 185 170 190 168 189 160
2000 186 170 186 166 190 161
4000 196 178 196 175 196 167
10000 196 180 196 172 196 167
50000 200 181 197 176 197 168

4 Case study

We revisit the multi-operation forging process presented in Section 1 and use this example

to illustrate how to implement the proposed method step by step in practice. In this process,

a forging machine (shown in the left panel of Figure 1) is comprised of multiple dies, each

assigned to perform one operation during a stroke. Tonnage forces exerted on all dies are

measured by four strain gauge sensors mounted on four columns of the press. In each cycle

of operation, four-channel tonnage profiles are recorded with length 1200 (See the right panel

of Figure 1). To reduce the measurement noise of profile observations in each channel, we

first apply the non-overlapping moving average function with the window size of 6. After

smoothing the length of each profile channel becomes 200. A sample of 526 multichannel

profiles was collected under different experimental settings. The sample includes 457 in-

control profiles collected under the normal production condition, and a group of 69 OC

(faulty) profiles. These OC profiles are measured when one part is missing in piercing station

shown in the first panel of Figure 7. To illustrate, the average profiles of two groups are

shown in the second panel of Figure 7. It is easily found that profile samples corresponding

to piercing fault and the normal operation are very similar, thus difficult to monitor. More

detailed discussion about this example can be found in Lei et al. (2010).

In this case study, we focus on constructing a Phase II monitoring method and thus, we
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Figure 7: (1): Shape of workpieces at normal and piercing operation. (2): Average profiles
of aggregated tonnage profiles for normal and piercing operations. (3): Average profiles
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separate the IC profile samples to estimate the related parameters. Detailed implementation

steps are as follows.

Step 1. Compute the related IC parameters. Here we apply the MFPCA to m0 = 457 IC

profile samples and calculate the mean function µ(u) and the first d = 16 eigenfunctions vk(u)

whose corresponding eigenvalues account for more than 85% of the profiles’ total variation.

Because profiles are measured at n = 200 discrete points, we apply formula (7) to estimate

the corresponding covariance matrix Σk, k = 1, . . . , d.

Step 2. Choose the desired IC ARL and the smoothing constant, w. Determine the

control limit, L, based on p, d, IC ARL and w. Given p = 4, d = 16, ARL0 = 200 and

w = 0.05, the L is found to be 85.28. Then we can construct the PCEWMA control chart

as demonstrated in Figure 8.

Step 3. Start monitoring the process. To illustrate the validity of our method, we set

the change point τ = 20. That is the first 20 profiles are randomly sampled from the IC

dataset, and subsequent profiles are randomly sampled from OC dataset. From Figure 8,

we can see that the PCEWMA chart quickly detect the changes at the 24th sample and Qi

remains above the control limit.
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5 Concluding Remarks

Phase II monitoring for multichannel profiles is a challenging problem and it has not been

thoroughly investigated in the literature. We proposed an approach that combines the clas-

sical EWMA procedure with the MFPCA. Our approach fully incorporates the correlation

information of multichannel profiles for monitoring. The proposed PCEWMA scheme can

be easily designed and constructed, and it has satisfactory performance. We also suggested

a Markov chain approach to determine the control limit of the proposed chart. A diagnostic

procedure was then developed, which was capable of identifying the change-point after a pro-

cess change was detected. In addition to the theoretical results, various simulation studies

were conducted to validate the proposed methodology. Through simulation, we also showed

that the proposed monitoring scheme PCEWMA outperformed conventional approaches in

terms of the OC ARL for monitoring both multichannel and single-channel profile obser-

vations. We applied PCEWMA to multichannel tonnage profiles for Phase II monitoring

in a multi-operation forging process to demonstrate the implementation of our proposed

methodology in practice.

Extensions of the proposed MFPCA-based method to the non-normal or autocorrelated

data could be a worthwhile and necessary future contribution to the existing literature

(Capizzi and Masarotto 2008). In addition, our proposal only handles the case of “sustained”

shifts in the process mean. Patterned, oscillatory shifts in mean as well as in variance may
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happen in practice and thus it is worth investigation in Phase II profile monitoring for these

types of changes.

Supplementary Material

The supplementary material contains R codes.
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Appendix: IC ARL Calibrations of PCEWMA via a

Markov Chain Model

Without loss of generality, we assume that Y i(u) is a Gaussian process, that is, ξik are iid

standard p-dimensional multinormal variables, which will facilitate the derivation of the tran-

sition probabilities as shown later. The Markov chain model can be regarded as an extension

of Runger and Prabhu (1996) to PCEWMA. One can refer to Lucas and Saccucci (1990)

and Runger and Prabhu (1996) for more details on the Markov chain approximation for

the conventional EWMA and MEWMA charts. We only briefly describe the approximation

method, but focus more on necessary formulas and modifications.

Following the representation of Qi in Section 2, we denote ϑi = (ξTi1, . . . , ξ
T
id)

T , and ϑi

comes from a pd-dimensional multinormal distribution with mean 0 and covariance matrix

2−w
w

Σ̃. Furthermore, we can easily obtain ζi = (1 − w)ζi−1 + wϑi. Define the (m + 1) by

(m + 1) transition probability matrix, P = (pij), where the element pij is the transition

probability from state i to j, and (m + 1) is the number of transition states. Denote g =

2[Lw/(2−w)]1/2/(2m+1). Now we have for i = 0, 1, 2, . . . , where m and j are not equal to

0 and denote epd is the pd component unit vector epd = (1, 0, 0, . . . , 0)T , that

pij = Pr{(j − 0.5)g < ‖wϑt + (1− w)ζt−1‖ < (j + 0.5)g|‖ζt−1‖ = ig}

= Pr{(j − 0.5)g < ‖wϑt + (1− w)igU‖ < (j + 0.5)g}

= Pr{(j − 0.5)g/w < ‖ϑt + (1− w)igepd/w‖ < (j + 0.5)g/w},

where we use the arguments from the proof of Proposition 1 in Runger and Prabhu (1996)

that the distribution of ζt−1 given ‖ζt−1‖ = ig is uniform on S(‖ζt−1‖), say as igU. The
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last equality comes from the fact that ϑt and U are independent. Let a = [(1 − w)ig/w]2

and denote a non-central chi-squared random variable with pd degrees of freedom and non-

centrality parameter a. Then

pij = Pr{(j − 0.5)2g2/w2 < χ2(pd, a) < (j + 0.5)2g2/w2},

For j = 0, we have pi0 = Pr{χ2(pd, a) < 0.52g2/w2}.

Let 1 denote the m+1 vector of all ones, and let I denote the m+1 dimensional identity

matrix. Let em+1 be a m + 1 vector with a 1 in the component that corresponds to the

starting state of the chain and zeros elsewhere. Finally, the IC ARL can be evaluated by

ARL = eT
m+1(Im+1 −P)−11.
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