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Statistical Analysis of Simulation Output from Parallel
Computing
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This paper addresses statistical output analysis of transient simulations in the parallel computing environment

with fixed computing time. Using parallel computing, most unbiased estimators commonly used based on

the output sequence compromise. To rectify this issue, this paper proposes an estimation procedure in the

Bayesian framework. The proposed procedure is particularly useful when the computing time depends on the

output value in each simulation replication. The effectiveness of our method is demonstrated through studies

on queuing simulation and control chart simulation.
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1 INTRODUCTION
Simulation is commonly used in many applications to evaluate the performance of complex systems,

or to estimate crucial quantities without analytic formulas. Statistical output analysis is a crucial

aspect of the success of simulation. In any case one can never make a stochastic simulation run

for somewhat arbitrary time and then treat the resulting simulation estimates as the “true” model

characteristics. This is because that simulation is naturally stochastic. It uses random samples from

certain probability distributions to drive the model through time, and outputs some realizations

of these random variables. These realizations may have large variance and, in certain situations,

differ greatly from the corresponding true characteristics. Consequently, careless use of simulation

outputs leads to possibilities of making erroneous statistical inferences. Because of this importance,

so far plenty of literature has been focusing on analyzing simulation outputs to achieve accurate

statistical properties (e.g. Kelton and Law [12], Law [13]).

One trend is, as systems become more complex, and their operation mechanisms become

more intriguing, simulation models necessarily become increasingly complex to achieve desired

accuracy and fidelity. As a result, the simulation models inevitably require longer computing time

to execute, and parallel computing grows as a natural solution to reduce the total execution time
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for a given number of simulation replications. For a class of transient simulations, embarrassingly

parallel setting is often sufficient, where each computing unit simulates one or more replications

independently and multiple computing units work simultaneously. Though parallel computing

provides promising speedup, it is also accompanied with more statistical issues and challenges for

simulation output analysis. One crucial problem for transient simulation is that the mixed output

sequence from multiple computing units compromises most commonly used unbiased estimators.

We use an example to illustrate this point. As commonly acknowledged, simulation plays an

important role in complex queuing system analysis. When evaluating a queue’s average overflow

time, for a simulation replication, the queue starts with its queue length equal to 0, and then operates

until the queue length flows over its threshold. Clearly the computing time of one replication highly

depends on its output value (the overflow time), as shown in Figure 9a. In the parallel setting as

Figure 1 illustrates, assumem computing units are employed, with each computing time budget

T , to evaluate the average overflow time. All units start running at the same time, and stop when

they reach the time budget T . Denote Xi j as the amount of computing time required to run the jth

replication on the unit i with outputYi j . A sequence of outputs {Yi j , i = 1, 2, · · · ,m, j = 1, 2, · · · ,Ni }

can be obtained, where Ni is the number of outputs obtained on the unit i . For general simulation

scenarios with correct random number generators, we can expect that Yi j and Yi′j′ are independent
when i , i ′ or j , j ′.
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Fig. 1. Illustration of the parallel computing. X c
i indicates the unfinished replication at T .

A natural estimator of the mean (i.e., E(Y )) is

µ̂0 =

∑m
i=1

∑Ni
j=1 Yi j∑m

i=1 Ni
. (1)

However, (1) is biased. Figure 2 shows its bias magnitude whenY follows an exponential distribution

with mean 1 and Xi j = Yi j . The bias is particularly severe for largem or small computing budget T .
In fact, as mentioned in [9], whenm → ∞, most natural estimators used in sequential computing

environments (i.e.,m = 1), including (1), are guaranteed to converge to wrong quantities in parallel

computing environments.

Despite that similar problems broadly exist in practical simulation studies, they receive little

attention with (1) taken for granted. To our best knowledge the only two works focusing on this

problem are [9] and [8]. They proposed effective methods to reduce the estimation bias under

some limited conditions. In particular, both methods need to know exactly which computing unit

generates each output Yi j . In addition, these methods need to control the parallel logic to wait
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Fig. 2. Relative estimation bias for the mean of exponentially distributed Yi j based on (1).

all or some of the unfinished replications at the stopping time T to finish. Unfortunately, both

requirements might not be practical, especially when using commercial cloud computing services.

In fact, from a general point of view, accurate estimation of transient simulation in paral-

lel computing with constrained time budget will not only provide good guidance on transient

simulation output analysis, but also shed light upon analysis of other types of simulations. One

example where this paradigm is possibly used is to rectify the initialization bias in steady-state

simulation ([1]). As firstly proposed by [5], virtually any steady-state simulation can be represented

in a regenerative way, and regenerative simulations can be regarded as one kind of transient simula-

tions. Since the problem of initialization bias does not arise in regenerative (transient) simulations,

algorithms for designing and analyzing transient simulations can be applied into steady-state

simulations to guarantee correct statistical properties ([10, 11]). Another emerging area of in-

creasing importance is about the ranking-and-selection problems. To select the best alternative

(subsystem), the first task of the ranking-and-selection procedure is to construct estimators for

every alternative with satisfactory accuracy. Otherwise bad estimators will mislead the selection

decision. Usually transient measures or regenerative representations of steady-state measures are

used in ranking-and-selection procedures. Mindful of the bias issue in time-constrained parallel

transient simulations, most of current parallel ranking-and-selection algorithms circumvent this

issue by considering fix-replication simulation, i.e., simulating every alternative for a fixed number

of replications with random completion time ([17, 18]). However, its disadvantage is the unpre-

dictable simulation time. Furthermore, for cases where the computing time and output value are

correlated and a longer computing time indicates a better output, the price of suspending all the

other units while waiting for a quite good output on one certain computing unit will be high. [15]

addressed and alleviated this time issue by proposing an asymptotic fully sequential procedure. In

this regard, if the bias problem in time-constrained parallel transient simulations can be solved,

we may get another potential direction for considering time-constrained ranking-and-selection

algorithms.

Motivated by the high demands for accurate output analysis of transient simulation in parallel

computing and the infancy of literature stressing on it, the paper further explores this field from the

following aspects: (1) we analyze the bias in a simple setting to obtain useful insights. We consider
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exponentially distributed Y , and linear relation between X and Y . We give the exact bias expression

for (1). (2) Inspired by this bias expression, we propose a new estimator in the Bayesian framework

without rigid constraints on the parallel computing environment. Our key idea is to remap the

superposed output sequence back to them individual sequential output sequences. Based on this

remapping, we can not only restore the superposed output sequence to i.i.d data, but also access

the computing time that the unfinished replications have used. Then this information is to be used

for better statistical analysis. Specifically, we treat the computing indices for Yn ,n = 1, . . . ,NT as

missing data and formulate the estimation as a missing data problem. Then we use Markov chain

Monte Carlo algorithm via Gibbs sampler to learn the distribution of the computing indices and

the distribution parameters of Y , from which we can consequently obtain the mean value as well

as other statistical properties of Y . Numerical results demonstrate the proposed procedure can

achieve accurate estimation results. Our procedure is shown to be applicable to both parametric

and nonparametric settings. Real case studies present satisfactory empirical evaluations of this

procedure as well.

The remainder of the paper is organized as follows. We consider simulation with exponentially

distributed outputs and analyze the causes and effects of the estimation bias in detail in Section 2.

Then we elaborate our new estimator in Section 3. To evaluate the effectiveness, we compare our

method with existing alternatives using some numerical studies in Section 4. We also demonstrate

the applicability of the proposal using two examples from queuing simulation and control chart

simulation in Section 5. Finally, we conclude the paper with remarks in Section 6. Some technical

details are provided in the Appendix.

2 BIAS ANALYSIS IN PARALLEL SIMULATION
In this section, we study the bias of (1) analytically. Following the simulation setting illustrated

in Figure 1, we denote Sni = Xi1 + · · · + Xini as the time taken for unit i to complete the first

ni replications. Given the simulation budget T , the number of completed replications from unit

the i , Ni , is a counting process with Ni = sup{ni , 0 < Sni ≤ T }. Whenm computing units run

independently, Ni and Nj are independent for any i , j . As a result, the outputs from all them units

form a superposed renewal process ([14]) with NT =
∑m

i=1 Ni (It is to be noted that Ni is a function

ofT , and Ni (T ) may be more precise. However for notation simplicity, we omitT hereinafter, when

no confusion will occur). The output sequence of this superposed process is mixed by outputs from

each unit, and is ordered by the completion times of individual outputs. To make it general, we

assume that we only observe the output values and synchronized computer times of the superposed

output sequence, but we do not know which computing unit generates each output. Without loss of

generality, we assume the speed of each computing unit is known, which can also be conveniently

estimated through a pilot run.

Unfortunately, a general superposed renewal process is difficult to analyze. To obtain some

insights on the cause of bias, we consider a special case. In particular, we assume Yi j follows the
exponential distribution with mean µ. The computing time is linear with the output value, i.e.,

Xi j = Yi j/λi where λi is the “speed” of unit i . As a result, Ni (t) reduces to a Poisson process, and

N (T ) is a superposed Poisson process. Following the properties of Poisson processes, conditioning

on Ni , SNi has the density

fSNi (s |Ni ) =
Nis

Ni−1

T Ni
, 0 ≤ s ≤ T ,

and (1) can be represented as µ̂0 =
∑m

i=1 λiSNi /
∑m

i=1 Ni .
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Proposition 2.1. The expectation of (1) can be computed as

E µ̂0 =
µτe−τ

1 − e−τ

[
(1 −m) · Γ(1) +

m∑
i=1

(1 − pi ) · Γ(1 − pi )

]
+

µ

1 − e−τ

[
m − e−τ τ −

m∑
i=1

e−τpi

]
,

where τ =
∑m

i=1 λiT /µ is the total “standardized” computing time, pi = λi/
∑m

j=1 λj is the proportion of
the unit i in the overall computing time, and Γ(u) is defined as the integral value

∫ u
0
(eτ x − 1)/x · dx .

From Proposition 2.1, it is easy to show that µ̂0 is asymptotically unbiased as T → ∞, but

is clearly negatively biased for a fixed T . When m = 1, E µ̂0 only includes the second part in

Proposition 2.1, and the corresponding bias reduces to −e−τ τ µ/(1 − e−τ ). It reveals that what we
really estimate is the mean of the truncated distribution, i.e., E µ̂0 = E [Y |X ≤ T ] ≤ E [Y ] ([7]).

Whenm > 1, in addition to the bias caused by this truncation, bias due to the mixed output

sequence also comes into play. More specifically, since the simulation time is proportional to the

output value, i.e., Xi j = Yi j/λi , it is expected that the replications with smaller outputs complete

earlier when all the replications start at the same time. In other words, the outputs no longer

have i.i.d. values, but are “ordered” probabilistically according to their values. The situation is

further complicated because each unit runs multiple replications sequentially. To better understand

the difference between sequential computing with m = 1 and parallel computing with m > 1,

([15]) describes the simulation process as a queuing model. The simulation replications represent

customers, which are waiting in the queue in a predetermined order. The m computing units

representm servers. For a single server system, the input and output sequences of the queue are

always the same. However, form > 1, the output sequence is stochastic, and different from the

input sequence because the service time of different customers is random. See Figure 3 for a better

illustration. In summary, since the estimator µ̂0 does not consider the inherent “order” in the output

sequence, µ̂0 inevitably underestimates the true mean µ. In fact, it can be shown that for a fixed T ,
asm → ∞, the bias converges to a value in the order of O(1/T ).

Fig. 3. Queue analogy of the simulation process.

The aforementioned analysis points out two important issues that need to be addressed to

reduce the estimation bias. First, the unfinished replications at the stopping time T should be

considered. They are similar to right censored data in survival analysis or reliability engineering.

Neglecting right censored data typically leads to truncation bias. Second, it is important to recover

the outputs from the mixed output sequence to i.i.d outputs so that the bias due to the “ordering”
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can be avoided. In the next section, we propose a Bayesian approach to analyze the outputs to

address both issues.

3 A BAYESIAN ESTIMATOR FOR BIAS REDUCTION
In this section, we are interested in estimating the distributional information of the random variable

Y through simulation. We first assume Y is parametric with the probability density function

(PDF) fy (Y ;Θ) and the survival function Ry (Y ;Θ). To allow for more flexibility to incorporate

prior information of Θ, here we propose to estimate Θ in the Bayesian framework. Then once

we obtain the posterior distribution π (Θ|Y1:NT ), we can easily derive the statistical properties of

Y , such as µ = E(Y ). For an easier exposition, we consider the relation between the computing

time and the output value is known, i.e., дi (·) is known in Xi j = дi (Yi j ). In this paper we assume

дi (·) is a monotone increasing function, which is also continuous and derivable, and we denote

д−1i (·) as the inverse function of дi (·). According to the derivative of inverse functions, we have

dдi (Yi j )/dYi j = dXi j/dд
−1
i (Xi j ). Then the PDF of Xi j can be easily derived as

fxi (Xi j ) = fy (д
−1
i (Xi j );Θ)

dд−1i (Xi j )

dXi j
=

fy (Yi j ;Θ)
dXi j

dд−1i (Xi j )

=
fy (Yi j ;Θ)

д
′

i (Yi j )
,

where Yi j = д
−1
i (Xi j ) and д

′

i (Yi j ) =
dдi (Yi j )
dYi j

. Similarly, we can derive the survival function of Xi j , i.e.,

Rxi (Xi j ) as Ry (д
−1
i (Xi j );Θ). Hereinafter, we simply denote fy (Yi j ;Θ) as f (Yi j ;Θ) and Ry (Y ;Θ) as

R(Y ;Θ) when no confusion is introduced. Correspondingly, we denote fxi (Xi j ) as f (Yi j ;Θ)/д
′
i (Yi j ),

and Rxi (Xi j ) as R(д
−1
i (Xi j );Θ). Later we generalize our proposed method to nonparametric cases

where Y ’s distribution form, i.e., f (·), is unknown. In particular, we propose to approximate f (Y ;Θ)
by a phase-type distribution, and present the corresponding Gibbs sampler procedure to obtain the

distribution of Y . The methodology in detail is discussed as follows.

3.1 Missing data formulation
From the analysis in Section 2, we can observe that to reduce the estimation bias, we need on one

hand to restore the output sequence to i.i.d data, and on the other to get the censored computing

time that the last unfinished replications have used before T . Both requirements can be fulfilled

if we know exactly the index of computing unit from which any given output is generated. This

information transforms the parallel output sequence intom sequential output sequences, which

then can be easily analyzed using existing approaches.

When computing indices for Yn ,n = 1, · · · ,NT are unknown, in this paper, we treat these

indices as missing data, and formulate the estimation as a missing data problem. More specifically,

we define the missing unit index information Zn ,n = 1, · · · ,NT , where Zn = i if the nth output

of the superposed output sequence comes from unit i . Clearly, Zn ,n = 1, · · · ,NT , are sufficient to

restore the parallel output sequence tom sequential output sequences. Denote Y = [Y1, · · · ,YNT ]
and Z = [Z1, · · · ,ZNT ]. Then if Z is known, given the complete data (Y,Z), it is straightforward to

compute the posterior distribution π (Θ|Y,Z), according to the Bayes’ Theorem,

π (Θ|Y,Z) ∝ p0(Θ) · p(Y|Θ,Z), (2)

where p0(Θ) is the prior distribution of the parameter Θ.
In particular, from Z, we may achieve the number of completed replications of unit i , i.e., Ni =∑NT

n=1 I(Zn = i), and its corresponding censored simulation time X c
i = T −

∑NT
n=1 I(Zn = i)дi (Yn).

Here I(·) is the indicator function which equals one when the condition is true and zero otherwise.

Then similar to the reliability data analysis, the total likelihood p(Y|Θ,Z) includes the PDFs of

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 2017.



Statistical Analysis of Simulation Output from Parallel Computing 0:7

the simulation times for the completed samples, i.e., fxZn (Xn),n = 1, . . . ,NT , and the survival

functions of the censored simulation times for the uncompleted samples, i.e., Rxi (X
c
i ), i = 1, . . . ,m.

Consequently, we have

P(Y|Θ,Z) =
NT∏
n=1

fxZn (Xn)

m∏
i=1

Rxi (X
c
i ) =

NT∏
n=1

f (Yn ;Θ)

д′Zn (Yn)

m∏
i=1

R(д−1i (X c
i );Θ).

As a result, the posterior distribution p(Y|Θ,Z) becomes

p(Y|Θ,Z) =
NT∏
n=1

f (Yn ;Θ)

д′Zn (Yn)

m∏
i=1

R
(
д−1i (X c

i );Θ
)
,

with д−1i (·) being the inverse function of дi (·). It should be noted that to justify this inverse function
exists, here дi (·) is assumed to be a monotone function.

For commonly used distributions of Y , abundant literature has been developed to efficiently

compute the posterior distribution of Θ in (2) with right censored data. Then (2) can easily lead to

the desired estimation of any statistical property of Y , such as E(Y ).

3.2 Gibbs sampler and proposal distribution
Unfortunately, Z is not known to make (2) directly usable. A common practice is to employ a

Gibbs sampler to iteratively update the distributional information of both Z and Θ, i.e.,π (Θ,Z|Y).
In our problem, it is natural to consider two blocks of quantities, Z and Θ, and to divide their full

conditional distribution as π (Z|Θ,Y) and π (Θ|Z,Y), respectively. In particular, the Gibbs sam-

pler constructs a Markov chain with the limiting distribution being the target posterior dis-

tribution π (Θ,Z|Y). Therefore, the posterior samples can be obtained by recursively sampling

from these two conditional distributions, using the most recent values of the conditioning vari-

ables at each step. It can be summarized in the following iterative sampling scheme accordingly.

ALGORITHM 1: Gibbs Sampler

1: Set k = 1, generate Θ(0)
from p0(Θ).

2: Generate Z(k ) from π (Z(k) |Θ(k−1),Y).
3: Generate Θ(k )

from π (Θ(k ) |Z(k ),Y).
4: Set k = k + 1; if k ≤ K + B, go back to step 2; otherwise stop and return {Θ(k),Z(k )},k = B + 1, . . . ,B +K ,

where B is the number of burn-in samples.

The iterative steps in Algorithm 1 can generate K samples from the joint posterior distribution

π (Θ,Z|Y) as {Θ(k ),Z(k )},k = 1, ...,K . For every sample Θ(k )
, we can calculate the corresponding

mean µ(k ) of the distribution parametrized by Θ(k)
. These samples µ(1:K )

can be collectively used for

point and interval estimation of µ. In a similar way, we can estimate other distribution properties

of Y , such as its variance or quantiles based on Θ(1:K )
.

While Step 3 can be solved in (2), obviously the most challenging and also the unique part in

our problem is to take samples from π (Z|Θ,Y). Using noninformative prior for Z, i.e., p0(Z) ∝ 1,

the conditional distribution is proportional to p(Y|Θ,Z). Equivalently,

π (Z|Θ,Y) ∝
NT∏
n=1

f (Yn ;Θ)

д′Zn (Yn)

m∏
i=1

R
(
д−1i (X c

i );Θ
)
. (3)

However, (3) is too complicated to warrant easy sampling. Alternatively, we adopt the Metropolis-

Hastings (M-H) algorithm to take samples from (3). In detail, we construct a proposal distribution

q(Z|Θ,Y) which is easier to take samples from. At each step, we sample Z∗
from q(Z|Θ,Y). We
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Fig. 4. Sequential construction of the proposal distribution q(Z|Θ,Y).

accept Z∗
as a sample from π (Z|Θ,Y) with probability

α(Z,Z∗ |Y) =min

{
p(Y|Z∗,Θ)q(Z|Θ,Y)
p(Y|Z,Θ)q(Z∗ |Θ,Y)

, 1

}
,

where Z is a valid sample in the previous step. Any discrete distribution with nonzero support in

{1, . . . ,m} can be the proposal distribution and guarantee the convergence of the M-H incorpo-

rated Gibbs sampler [16]. However, a good proposal should guarantee the acceptance probability

α(Z,Z∗ |Y) not very small, otherwise the chain will explore the parameter space too slowly. In

general, an ideal proposal distribution among those in a parametric class is that best approximates

the posterior distribution π (Z|Θ,Y), according to some metrics, and yet easy to take samples from.

ConsideringYn ,n = 1, · · · ,NT are generated sequentially in the output sequence, we construct

the proposal distribution q(Z|Θ,Y) sequentially as

q(Z ∗
1
|Θ,Y1) ·

NT −1∏
n=1

q(Z ∗
n+1 |Θ,Z

∗
1:n ,Y1:n+1), (4)

where q(Z ∗
1
|Θ,Y1) is the initial sampling probability. We propose a multinomial distribution to

define the probability q(Z ∗
n+1 |Θ,Z

∗
1:n ,Y1:n+1). In more details, given the previous assignmentsZ ∗

j , j =
1, · · · ,n, we can calculate the running time of each computing unit since its last output. We define

Skn =
∑n

j=1 I(Z
∗
j = k)дk (Yj ) as the time when the most recent output from unit k is generated.

Consequently, Tn = max{Skn ,k = 1, . . . ,m} is the time when the most recent output among all

units, i.e., Yn , is generated.
If the (n + 1)th output Yn+1 is generated from unit i , the most recent output time becomes

T i
n+1 = Sin +дi (Yn+1). At the same time, it also implies the remainingm−1 units have not generated

any output between Skn and T i
n+1 for all k , i . In other words, the current replication on any

unit k , i runs longer than T i
n+1 − Skn , or equivalently the next output value from unit k is larger

than д−1k (T i
n+1 − Skn). See Figure 4 for a schematic illustration with i = 1. Clearly, we also need to

ensure that T i
n+1 > Tn because Yn+1 is generated later than Tn . Considering these properties, we

can compute the probability q(Z ∗
n+1 = i |Θ,Z

∗
1:n ,Y1:n+1) by the instantaneous risk of generating Yn+1

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 2017.
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from unit i and the survival probability at T i
n+1 for the remainingm − 1 units. In detail, we define

ξn+1(i) ≡ I(T i
n+1 > Tn)

f (Yn+1)

д′i (Yn+1)

∏
k,i

R
(
д−1k

(
T i
n+1 − Skn

)
;Θ

)
. (5)

The sampling probability can then be obtained by normalizing the constants ξn+1(i), i.e., q(Z
∗
n+1 =

i |Θ,Z ∗
1:n ,Y1:n+1) = ξn+1(i)/

∑m
j=1 ξn+1(j), which follows a multinomial distribution. The initial prob-

ability q(Z ∗
1
|Θ,Y1) can be defined in a similar way by setting Si0 = 0, i = 1, · · · ,m. Actually, this

proposal distribution of Zn is motivated by the “competing risk” in reliability analysis [20], where

failures of a system havem types. Given the previous failure times of thesem types, we want to

predict the next failure type. In particular, it assumes the probability that the next failure belongs

to type i follows a multinomial distribution, and its mass probability distribution is proportional to

the instantaneous risk of failure type i times the survival probabilities of the otherm − 1 failure

types.

The proposed sequential construction of q(Z|Θ,Y) imitates the evolution of the output se-

quence, and is expected to approximate π (Z|Θ,Y) well. Its performance has also been well tested

through numerical studies and real case examples, which will be discussed later.

Remark It should be noted whenT orm is big, sampling Z∗
according to the proposal distribution

in Equations (4, 5) becomes time consuming. It is because in both cases NT becomes big, and the

searching space of Z∗
increases. However, the feasible space of Z∗

cannot increase as fast as the

searching space. Consequently, the proportion of the feasible space in the searching space becomes

smaller as NT increases. The slow increase of the feasible space is mainly caused by the time

order constraint of the superposed output sequence, i.e., Yn should be completed after Yn−1 for
n = 2, · · · ,NT . In this way we can guarantee the virtual output sequence {Y ∗

1:NT
} formulated by

{Z ∗
1:NT

} has the same time order as {Y1:NT }. However, actually this constraint does not influence

the estimation of Θ too much, since (2) is only related to the censored observations Y c
1:m . In this

sense as long as {Z ∗
1:NT

} ensures a good sample of the censored data which has a big likelihood

for (3), this {Z ∗
1:NT

} can give a good sample of Θ. When we release this constraint, we enlarge the

feasible region of {Z ∗
1:NT

}, and therefore enlarge the sample space of {Y c
1:m} and correspondingly

Θ. It means that the Gibbs sampler needs more iterations to find the steady state of Θ and more

burn-in samples, consequently leading to a slower convergence speed. However, the computing

time for increasing the sampler length is much smaller compared with that for finding a feasible

solution of {Z ∗
1:NT

} with unreleased constraints. From this point of view, we propose a substituted

proposal distribution for {Z ∗
1:NT

} by removing Iin for large scale parallel computing with bigm
and T , i.e.,

ξn+1(i) =
f (Yn+1)

д′i (Yn+1)

∏
k,i

R
(
д−1k

( [
T i
n+1 − Skn

]+)
;Θ

)
.

This proposal demonstrates to be quite efficient in the aspects of speeding up the sampling time on

one hand, and on the other delivering accurate estimations as shown in Section 4.

3.3 A nonparametric procedure by phase-type approximation
For nonparametric Y with f (·) unknown, we may still implement our procedure above by approx-

imating Y using a phase-type distribution (PHD). This is because, for transient simulation, the

simulation (termination) time can be formulated as the first hitting time of a Markov process, which

can be conveniently modeled as a PHD. Furthermore, PHD is a commonly used nonparametric
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distribution family. In fact, it can approximate any continuous probability distribution with nonneg-

ative real values arbitrarily close ([19]). With these in mind, we present a particular Gibbs sampler

algorithm for the PHD parameters.

3.3.1 Phase-type approximation. We first use two typical examples to illustrate the nature of

transient simulation. The first is the average operation time before overflow in queuing system

analysis. The queue starts with the initial queue length 0, and overflows when the queue length is

bigger than a pre-specific value L. The overflow time Y is the total operation time of the queue

before overflow. For a general G/G/1 queue, the distribution of Y has no analytical form, therefore

E(Y ) needs to be estimated via simulation. In one simulation replication, we start the queue with its

terminating criteria as Q > L, and wait for its operating until terminating. As we know, in queuing

system analysis, generally the queue length Q can be described by a Markov chain. If we set Q > L
as the absorbing state, then Y is the evolution time of the chain before entering the absorbing state.

Another example arises in the control chart performance simulation. Usually we evaluate a chart

in terms of average run length and use simulation to estimate it. In every simulation replication,

the control chart runs until its charting statistic T goes out of the control limit L, and returns the

run length Y of this replication. Actually, we can discretize the range of the charting statistic T
within the control limit into several regions as transient states, and treat the region out of the limit

as the absorbing state. Then we can treat the evolution of T as a Markov chain, and the run length

Y is the first hitting time of chain on the absorbing state. This Markov chain approach has been

vastly used as the most effective approximation method to study the run length characteristics of

complex charts ([3, 21]).

As illustrated in the two examples above, for general transient simulations, there is a charac-

teristic (or event) T denoting the current system state of the simulation model and a terminating

area for T defined according to a pre-specific criterion. The simulation starts with an initialized T
and runs until T reaches the terminating area. Then the simulation returns the output Y which is a

measure of the evolving time ofT . In this wayT can be viewed as a continuous-state homogeneous

Markov chain. Under very mild conditions, the chain can be accurately approximated using a

finite-state homogeneous Markov chain by discretizing the range of T excluding the terminating

area into p regions (transient states) and one region of the exact terminating area (absorbing

state). Hence the output Y can be defined as a random variable describing the evolution time until

absorption of the chain, i.e., a PHD. The formal definition of the PHD is introduced as bellows.

Definition 3.1. Continuous Phase-type Distribution (PHD) Consider any continuous-time

Markov chain on a finite discrete state space with total (p + 1) states as 0, 1, · · · ,p where state 0

is the only absorbing state. Without loss of generality, the infinitesimal generator of the Markov

chain can be expressed as:

Q =
[

0 0
s0 S

]
, (6)

where S = (Si j ) is the matrix of transition rates from non-absorbing state i to j for i , j, i, j ∈
{1, · · · ,p}. s0 is the vector of transition rates from state i to the absorbing state and 0 is a p × 1

vector. A PHD with order p is defined to be the distribution of the time to enter the absorbing state

of a continuous-time Markov chain with the generator as (6) and the initial state probabilities as

[1 − π 01,π 0]. Here π 0 is a 1 × p vector with 0 <
∑p

i=1 π0i ≤ 1. Then the CDF and PDF of the PHD

variable Y are

F (Y ; S,π 0) = 1 − π 0e
SY 1

f (Y ; S,π 0) = π 0e
SY s0

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0. Publication date: 2017.



Statistical Analysis of Simulation Output from Parallel Computing 0:11

Another motivation for using a PHD to approximate the output distribution is that the PHD

is in the space of all continuous positive real axis and hence can approximate any continuous

probability distribution arbitrarily close ([19]). As pointed by [4], since any distribution has a

rational Laplace-Stieltjes transform, any distribution can be approximated by a set of exponentially

distributed “stages” or “phases”, and consequently represented by a phase-type distribution.

3.3.2 Gibbs sampling for the approximate phase-type distribution. Now we introduce the Gibbs

sampler for the PHD estimation in detail. Suppose Y ∼ PHp (·; S,π 0) with order p. We assume

p is fixed in advance, and want to estimate Θ = {S,π 0} and the corresponding E(Y ) by taking

the censored data into account. In particular, sampling Z is the same as the general estimation

procedure in Section 3.2. Here we only stress on how to sample Θ.
Since every Yn only represents the time to absorption but does not tell the detailed Markov

jump path such as where it starts, which of the states it visits and for how long, mere Yn without the

jump path information is still incomplete to estimate Θ. Consequently, further data augmentation

for the path information is also needed in the Gibbs sampler. Specifically, we treat every Markov

jump path Jn = {Cn ,Un} (n = 1, · · · ,NT ) as latent variables which include all its rn visited states

before absorption as Cn =
[
c1, · · · , crn

]
(c1 is the initial state) and the corresponding sojourn time

for every state as Un =
[
u1,u1, · · · ,urn

]
. For the censored observations Y c

i , i = 1, · · · ,m, we also

define J
′

i = {C
′

i ,U
′

i } representing the whole jump path of Y c
i until absorption at an unknown time

point bigger than Y c
i .

Combining these two kinds of latent variables, the joint posterior distribution becomes

π (Θ, J1:NT , J
′

1:m |Y1:NT ,Y
c
1:m). We further divide the variables into three subgroups {J

′

1:m}, {J1:NT },
and {S,π 0}, and take samples from their full conditional distributions using the Gibbs sampler. We

summarize the main results as bellows.

• Sampling from π (J
′

1:m |Θ,Y c
1:m)

π (J
′

i |Θ,Y
c
i ) for i = 1, · · · ,m can be sampled via standard Markov chain simulation with

rejective sampling as shown in Algorithm 2.

ALGORITHM 2: Simulate π (J
′

|Θ,Y c )

1: Set r = 1, draw the starting state c1 from π0. Initialize C
′

= c1 and U
′

to be empty.

2: Draw the sojourn time, ur in the state cr from the exponential distribution with rate −Scr cr , and update

U
′

=
[
U

′

,ur
]
.

3: Draw the state move, l , from the multinomial distribution with PMF as

P(l) =
Scr l

−Scr cr
, l , ck

4: If l = 0, then go to Step 5; Otherwise update r = r + 1, cr = l and C
′

=
[
C

′

, cr
]
, then loop to Step 2.

5: if

∑r
j=1 uj > Y c , accept the current J

′

= {C
′

,U
′

}, otherwise, reject the current J
′

and resample from Step

1.

• Sampling from π (J1:NT |Θ,Y1:NT )
To simulate π (Jn |Θ,Yn) for n = 1, · · · ,NT , we resort to the M-H algorithm by considering

another Markov path J ∗n with absorption time beyond Yn as the proposal distribution. The

detailed procedure is shown in Algorithm 3. After K steps of this M-H algorithm, the

final process J ∗n can be regarded as a sample from the target Markov chain. Its detailed

derivation can be refereed to [2].
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ALGORITHM 3: Simulate π (J |Θ,Y )

1: Set k = 1, generate J
′

= {C
′

,U
′

} from π (J
′

|Θ,Y ). Obtain J = {C,U} by truncating J
′

at

r = maxi (
∑i
j=1 uj < Y ) and only reserving the first r components, i.e., resetting C =

[
c
′

1
, · · · , c

′

r

]
, and

U =
[
u
′

1
, · · · ,u

′

r−1,Y −
∑r−1
j=1 u

′

j

]
.

2: Obtain another J∗ by firstly generating J∗
′

from π (J∗
′

|Θ,Y ) and then truncating J∗
′

at r∗ in the same way

as Step 1.

3: Draw v ∼ Uniform(0, 1).

4: If v ≤ min(1,
s0cr
s0
c∗
r ∗

), where s0cr and s0c∗r ∗
are the absorbing rates at the last state cr for J and c

∗
r ∗ for J

∗
as

defined earlier, then replace J with J∗.
5: Set k = k + 1; If k < K , go back to step 2; Otherwise terminate and return J .

• Sampling from π (Θ|J1:NT , J
′

1:m)

The target density of {S,π 0} based on the augmented complete observations can be written

as

π (S,π 0 |J1:NT , J
′

1:m) ∝ p0(S,π 0)p(J1:NT , J
′

1:m |S,π 0)

where p0(S,π 0) is the prior distribution. Here instead of sampling the matrix S directly, we
choose to sample its off-diagonal items {Skl ;k, l = 1, · · · ,p,k , l} and the absorbing rates

{s0k ,k = 1, · · · ,p} with the relation s0k = −
∑p
l=1 Skl in mind. By setting proper independent

conjugate prior distributions, their marginal posterior distributions have close forms, i.e.,

p0(s0k ) ∼ Gamma(αk0, βk )

p0(Skl ) ∼ Gamma(αkl , βk )

p0(π 0) ∼ Dirichlet(θ1, · · · , θp )

 −→


π (s0k | J1:NT , J

′

1:m ) ∼ Gamma(αk0 + Nk0, βk + rk )

π (Skl | J1:NT , J
′

1:m ) ∼ Gamma(αkl + Nkl , βk + rk )

π (π 0 | J1:NT , J
′

1:m ) ∼ Dirichlet(θ1 + b1, · · · , θp + bp )

(7)

where

– bk : the total number of jump paths with initial state k ;
– rk : the total time spent in the state k across all the paths {J1:NT , J

′

1:m};

– Nkl : the total number of transition moves from k to l across all the paths.
– Nk0: the total number of absorbing moves from state k to state 0 across all the paths.

The detailed derivation of (7) is shown in the Appendix. With these three steps above, we can get

a sample Θ(k)
and µ(k ) via the relation µ = −π 0S−11. Combining with sampling step of Z in the

Section 3.2, we can get the full Gibbs sampler for the PHD approximation.

Remark One main concern with the PHD approximation is how to choose the number of phases,

i.e., the order p for the PHD approximation. We illustrate this point using two examples, fitting

Weibull and log-normal distributions by PHD with different orders. For every distribution 1000

complete samples are generated, based on which we use the Gibbs sampler for π (Θ, J1:1000 |Y1:1000)
to estimate the PHD parameters. Figure 5 draws the density function of the true distribution and

the fitted PHD. We can see that when p increases firstly, the approximate PHD approaches the true

density with smaller difference. Later though p goes on increasing, the approximation performance

no longer improves significantly. This reveals that there is a minimum value of p required for a

good approximation, and yet p bigger than this minimum value will no longer provide significant

performance improvement. Moreover, since the complexity of the approximate PHD representation

depends on the size of the state space of the underlying Markov chain, a smaller p is more desirable

to keep the number of states low and consequently ensures a more stable numerical result. In our
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Fig. 5. PHD approximation for (a) Weibull (α , β) distribution with scale α = 2 and shape β = 113; (b)
Log-normal (µ,σ ) distribution with mean µ = 5 and standard deviation σ = 1.

cases, p can be decided in advance by comparing different p’s fitting performance for the complete

observations {Y1:NT }. Furthermore, as shown in the numerical studies, the proposed Gibbs sampler

for the PHD estimation is very robust to the choice of p and can remain accurate even in the cases

where the chosen p is a bit bigger than the true p. Furthermore, given a chosen p, it is also important

to select the prior distribution for (7). In reality, with the observations {Y1:NT }, we can first use

the maximum likelihood estimation in [6] to get a point estimation of π 0, S and s0, denoted as

π⋆
0
, S⋆ and s0⋆. According to them, we further set the hyper-parameters for (7). In particular, we

set θ = π⋆
0
for the Dirichlet distribution. We let all the Gamma distributions have the same scale

parameter as βk = β0 for k = 1, . . . ,p, and set the shape parameters of these Gamma distributions

as αkl = S⋆kl β0 and α0

k = s0⋆k β0. In this way we ensure the mean of these Gamma distributions

equals S⋆kl or s
0⋆
k . In the numerical studies of Section 4, we set β0 = 0.1. Other values of β0 and

αkl can also be used, and our empirical studies show that the Gibbs sampler is very robust to the

hyper-parameters. This is because, in the Bayesian analysis, if the sample size NT is big enough,

the influence of the hyper-parameters can be negligible.

4 NUMERICAL STUDIES
In this section we use some numerical studies to demonstrate the feasibility and accuracy of the

proposed procedure. In addition to the naive estimator µ̂0 in (1), we also compare our method with

another two estimators, the estimator in [9] denoted as µ̂1, and the one in [8] denoted as µ̂2. It is
noted that both µ̂1 and µ̂2 assume the computing indices Z of all simulation outputs Y are known,

which might be inapplicable in real examples.

4.1 Simulation validation
We first consider the parametric scenario, where Y follows the Weibull distribution with scale

a = 225.6758 and shape b = 2. We are interested in estimating its mean E(Y ) = 200. We set

Xi j = Yi j/λi , with λi = 1, 2/3, 1/2, 2/5, 1/3 for 20% of them units, respectively. We compare the

performance whenm = 10 andm = 100. In addition, we consider stopping timesT ranging from 800
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Fig. 6. The estimated Weibull scale parameter a (true value equals 225.6758) for different iterations in a
Markov Chain in the simulation withm = 10 and T = 800.

to 2000
1
. For everyT , we simulate 200 different macro replications of {Y1:NT }. For every replication,

we assume knowing the distribution form of Y and run the Gibbs sampler particularly designed

for the Weibull distribution. We generate a Markov chain with 1000 observations. We empirically

evaluate its convergence rate and the required burn-in samples. For example, for m = 10 and

T = 800, Figure 6 shows the estimated Weibull scale parameter in one Markov chain. We can see

that the chain converges to the stationary state after the first 20 observations. The convergence

rate will further increase as the sample size NT increases. As such, for our simulations, a burn-in

sample size 50 is large enough to discard the non-stationary observations. We use the remaining

950 steady-state samples to approximate the empirical distribution of µ = E(Y ). We use the mode of

this empirical distribution, noted as µ̂G , as the point estimate of µ for this macro replication. Then

the estimation bias of µ̂G is calculated as the mean of the µ̂G from these 200 macro replications

minus the true value. We also construct the estimators µ̂0, µ̂1, and µ̂2 for every macro replication

and calculate their corresponding bias.

The results are summarized in Figure 7a and 7b. They clearly show that µ̂0 always has negative
bias, and the bias is large when T is small orm is big. In contrast, the other three estimators have

negligible bias throughout. However, both estimators µ̂1 and µ̂2 require more information on the

typically unknown indices Z, and take much longer simulation time than the budgetT to obtain the

outputs from the unfinished replications at T . It is recorded that for T = 800, the average finishing

time of µ1 is T1 = 1500 form = 10, and T1 = 2200 form = 100. This time extension T1 − T will

continue increasing as T increases due to the so-called paradox ([9]). Conversely, our proposed

method can reduce the bias significantly at no expense of either extra computing time or knowing

Z.
Furthermore, as shown in Figures 7a and 7b, for the same T , whenm is larger, µ̂G performs

better in terms of a smaller estimation variance. This is because that a largerm leads to a larger

NT , and therefore a lower estimation variance. We have done extra simulations to validate this

point. In particular, we fix T = 1000, and increasem from 10 to 100. For every value ofm, we do

simulation in the same way as above by assuming Yn follows Weibull(225.676, 2). Then we calculate

1
It should be noted that for all the simulations in this section, they do not require a real parallel computing environment,

since the simulation of every replication output does not necessarily take real time. In other words, assume the simulation

output follows a certain distribution, such as the Weibull distribution. We “simulate” the outputs sequentially by randomly

generating samples Yi j , j = 1, 2, . . . from the Weibull distribution sequentially, for every “virtual” computing unit i . The
random sample generation is so fast that the simulation does not take any time. However, to mimic simulations in reality,

we assume the “real” computation time for every sample of every unit is Xi j = Yi j /λi j . Since the “real” computation time

is not real, there is no real time unit here.
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the estimation bias of µ̂G together with its standard deviation as shown in Table 1. We can see that

the bias almost equals 0 for allm consistently, demonstrating the efficiency of the proposed bias

correction algorithm. Furthermore, asm increases, the estimation variance decreases, as discussed

above.

Table 1. PHD approximation results with T = 1000 and variousm.

m 10 25 40 55 70 85 100

bias 1.11 -0.98 -0.41 0.49 0.52 0.66 0.25

Std 20.3 13.5 9.89 8.92 8.07 7.42 6.31

We also consider the nonparametric scenario with PHD approximation. We use two new

distributions of Y for demonstration. One is the third order hyperexponential distribution with

probability parameters p = (1/4, 1/4, 1/2) and rate parameters λ = (1/150, 1/150, 1/250). The other
is the Erlang distribution with parameters (3, 0.015). Both distributions have mean 200. We assume

the distribution form of Y is unknown, and apply the nonparametric estimation procedure. In

particular, for both distributions, we first use the Gibbs sampler for π (Θ, J1:NT |Y1:NT ) to decide the

PHD order p, which is rightly 3. Then we test the proposed estimation procedure following the

same steps as the last paragraph. From the results in Figure 7c and 7d, we can see the performance

is similar as that for Weibull distribution. which again demonstrates the satisfactory performance

of our method.

Now we further show that even though in some cases the moment matching algorithm may

not provide an accurate (or optimal) choice of p, as long as p does not deviate from the true (or

optimal) p too much, this incorrect p will not affect the performance of the proposed procedure

too much. In other words, when the chosen p is a bit larger the true one, our algorithm is still

numerical feasible and stable. When the chosen p is a bit smaller than the true one, our algorithm

can still achieve a reasonable result. We demonstrate this point by fitting the previous HypExp

(a, b) distribution with 2-order and 4-order PHD and compare their bias and rooted mean square

error (RMSE) in Table 2. We still simulate 200 different macro replications of {Y1:NT }. The bias is
calculated in the same way as previously, and the RMSE of µ̂G is calculated as the sample standard

deviation of the 200 µ̂G . We can see that with no surprise the 3-order PHD has the smallest bias

and RMSE. While for the 2-order PHD, though its bias is slightly bigger than the other two due to

its oversimplified model assumption, the result is still reasonable and acceptable. On the contrary,

the overparameterized 4-order PHD can achieve a comparable small bias as the 3-order one, but

the former has a slightly bigger RMSE than the later. To further illustrate the quality of a PHD

approximation, we also fit the previous Erlang distribution with a 2-order PHD, a 3-order PHD

and a 4-order PHD, and compare their empirical probability densities with the true one as Figure 8

shows. Every empirical density is plotted based on totally 950× 200 PHD observations. In particular,

for a macro replication, for every Θ(k )
drawn from the Gibbs sampler after the burn-in period, We

draw one PHD observation from its PHD(·|Θ(k)). In this way we totally have 950 samples for one

macro replication, and we combine all the samples from the 200 macro replications together. We

can see that consistently with Table 2, the 2-order PHD fails to describe the true density to some

degree, while the 3-order PHD and the 4-order PHD approximate the true density quite well.

5 EMPIRICAL EVALUATION
In this section, we use some empirical studies from queuing system and control chart performance

simulation to test the implementability of the proposed procedure.
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(b) Weibullm = 100
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(c) HypExpm = 100
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(d) Erlangm = 100

Fig. 7. Estimation bias of the mean of Weibull(225.676, 2) with (a)m = 10 and (b)m = 100, (c) HypExp(p,λ)
withm = 100, and (d) Erlang(3, 0.015) withm = 100.

Table 2. PHD approximation with different orders for the hyperexponential distribution

PHD2 PHD3 PHD4

t Bias RMSE Bias RMSE Bias RMSE

800 3.93 5.19 -1.10 6.62 -1.67 7.28

1200 3.46 5.10 0.41 6.01 -0.45 6.70

1600 3.16 4.85 0.35 4.57 0.44 5.36

2000 3.04 4.25 0.30 4.27 0.39 5.24

5.1 M/M/1 queue overflow simulation
Simulation plays an important role in queuing system analysis. Here we consider a simple case,

analyzing the overflow time Y of a M/M/1 queuing system, for illustration. In particular, the

M/M/1 queue has an arrival rate 1, and a departure rate 1.1. Defining the overflow as Q > 20

where Q is the queue length with initial value 0, we use simulation to estimate the average time to

overflow, i.e., E(Y ). In particular, we use the Dell Precision Tower T7910 as the parallel computing

environment. The workstation has dual Intel Xeon E5-2670 processors. Every processor has 16

cores, with totally 32 cores available. Among themm = 30 cores are used as different computing
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Fig. 8. PHD approximation with different orders for Erlang (3,0.015).

units to run the simulation in parallel
2
. Pilot runs show that all units have the same speed, with

the fitted relation Xi j = 0.0033Yi j for all computing units as Figure 9a shows. Estimation using

the completed Y suggests a 2-order PHD approximation. Then we calculate µ̂G according to the

proposed nonparametric method in Section 3.2 and 3.3.2, and compare it with the naive estimator

µ̂0. Figure 9b shows their results at different stopping times up to T = 120. We can see that µ̂0 fails
to provide a reliable estimate when T is small, while µ̂G has negligible bias regardless of T . It is to
be noted that since the index information Z is not known in this and the next example, µ̂1 and µ̂2
are not applicable.
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Fig. 9. (a) The relation between overflow time Y and computing time X ; (b) Average overflow time, E(Y ),
estimation using different methods.

2
It should be noted in this parallel computing environment, we can actually fetch the index information for every simulation

output. However, in our simulation context, we assume this information unknown.
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5.2 Control chart simulation
We also apply our method to estimate the average run length (ARL) of the control chart in [22]

through simulation. In this example, we use the high-performance computing (HPC) resource of

National University of Singapore as the parallel computing environment. Every user account can

submit limited simulation tasks to the HPC and the HPC randomly allocates idle computation cores

(units) for the user. Due to limited authorities and confidential information, users don’t know the

exact information of every computation core. We usem = 172 computing units withT = 315 hours.

All run length outputs Y are recorded in a single file in the order of their completion instants. Figure

10a shows that for Y ≤ 58, X is quadratic in Y , while for Y > 58, X is linear in Y . This piecewise
relation is consistent with its original logic in [22]. Therefore, we use the following model for such

relation

Xi j =

{
ai1Y

2

i j + ai2Yi j + ai3, for Yi j ≤ 58

bi1Yi j + bi2, for Yi j > 58

, (8)

where the model parameters are unit dependent. The fitting results (red line in Figure 10a) show

that (8) is satisfactory.
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Fig. 10. (a) The relation between run length Y and computing time X ; (b) The histogram of Y .

We calculate the ARL using µ̂G at different T up to 315 hours, and compare µ̂G with µ̂0 in
Figure 11. In addition, since the output Y is exponentially distributed as Figure 10b shows, we

can approximate the relation between X and Y to be a linear one and use the analytical formula

of Proposition (2.1) to obtain a bias-adjusted estimator, denoted by µ̂A. To be more specific, in

Proposition 2.1 pi can be derived from the estimated linear relation for every unit. τ is the expected

number of finished replications up to T and can be approximated by NT . Then we can calculate

the bias expansion for every T based on Proposition 2.1 and adjust the estimator correspondingly.

Figure 11 demonstrates that both methods can reduce the bias significantly, and are much superior

than the naive estimator.

6 CONCLUDING REMARKS
For transient simulation using parallel computing with a time budget, when the simulation time

depends on the output value of the replication, most popular unbiased estimators compromise and
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Fig. 11. ARL, E(Y ), estimation using different methods.

lose their statistical accuracy. This paper proposes a new estimator in the Bayesian framework to

reduce the bias. Numerical studies together with two case examples illustrate that the proposed

procedure can achieve satisfactory estimation results under mild restrictions.

Along this research direction, there are still some valuable extensions. One is to extend the

current framework into steady-state simulation to rectify its initial bias. Another is to combine the

current framework with ranking-and-selection procedures. Since the Bayesian analysis not only

provides the point estimation, but also the posterior distribution of E(Y ), this extra information is

expected to provide a better evaluation of the subsystems in the ranking-and-selection problems.

Furthermore, we may also consider developing a nonparametric Gibbs sampler to estimate E(Y )
directly using some nonparametric Bayesian methods in survival analysis without impressing any

distribution assumption on Y . For example, we may assume the hazard rate of Y as a martingale

jump process and use it to express the PDF and the survival function of Y .

APPENDICES
A-I Proof of Proposition 2.1
As previously shown,

E µ̂0 =

∞∑
k1=0

· · ·

∞∑
km=0

(∫ T

0

· · ·

∫ T

0

λ1x1 + · · · + λmxm
k1 + · · · + km

m∏
i=1

kix
ki−1
i

tki
dx1 · · · dxm

)
·

m∏
i=1

P(Ni = ki )

=

∞∑
k1=0

· · ·

∞∑
km=0

(∑m
i=1 λiki/(ki + 1)∑m

i=1 ki
T

)
·

m∏
i=1

exp(−
λi
µ T )(

λi
µ T )

ki

ki !

= ENT
T

NT
EN1, · · · ,Nm |NT

m∑
i=1

1

θi

Ni

Ni + 1
, NT ≥ 1 (A.1)

According to the properties of the Poisson distribution, NT follows the Poisson distribution with

rate τ =
∑m

i=1
λi
µ T . In addition, the conditional distribution of Ni given NT follows multinomial

distribution with parameters (NT ,pi , i = 1, · · · ,m), where pi = λi/
∑m

j=1 λj . To compute (A.1), we

first provide the following useful lemma.
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Lemma 6.1. If X follows Binomial distribution with parameter (n,p), then

E

X

X + 1
= 1 −

1 − (1 − p)n+1

(n + 1)p

n→∞
−−−−−→
np→λ

1 −
1 − exp(−λ)

λ

Proof of Lemma 6.1. Since X ∼ Binomial(n,p), it is easy to note that

E

X

X + 1
=

n∑
k=0

k

k + 1
·

n!

k!(n − k)!
pk (1 − p)n−k (A.2)

=
1

(n + 1)p

n∑
k=0

k ·
(n + 1)!

(k + 1)!(n − k)!
pk+1(1 − p)n−k (A.3)

=
1

(n + 1)p

n+1∑
j=1

(j − 1) ·
(n + 1)!

j!(n + 1 − j)!
p j (1 − p)n+1−j (A.4)

=
1

(n + 1)p

[
E(Y − 1) + (1 − p)n+1

]
, where Y ∼ Binomial(n + 1,p) (A.5)

= 1 −
1 − (1 − p)n+1

(n + 1)p
. (A.6)

In addition, when n → ∞,p → 0, and np → λ, we have

lim

n→∞,np→λ
E

X

X + 1
= lim

n→∞,np→λ

[
1 −

1 − (1 − p)n+1

(n + 1)p

]
(A.7)

= lim

n→∞,np→λ
1 −

1

λ

[
1 −

(
1 −

(n + 1)p

(n + 1)

)n+1]
(A.8)

= 1 −
1 − exp(−λ)

λ
. □ (A.9)

□

According to Lemma 6.1, E µ̂0 essentially reduces to

E µ̂0 = ENT
T

NT

m∑
i=1

λi

[
1 −

1 − (1 − pi )
NT +1

(NT + 1)pi

]
=

m∑
i=1

λiT ENT

[
1

NT
−
1 − (1 − pi )

NT +1

NT (NT + 1)pi

]
, NT ≥ 1

= µτ

[
ENT

1

NT
−

m∑
i=1

ENT
1 − (1 − pi )

NT +1

NT (NT + 1)

]
= µτ

[
ENT

1 −m +
∑m

i=1(1 − pi )
NT +1

NT
+ ENT

m −
∑m

i=1(1 − pi )
NT +1

NT + 1

]
(A.10)

(A.10) can be further simplified using the following lemma.

Lemma 6.2. If N follows the Poisson distribution with mean parameter λ, then

E(
1

N
|N ≥ 1) =

exp(−λ)

1 − exp(−λ)

∫
1

0

eλx − 1

x
dx , E(

pN

N
|N ≥ 1) =

exp(−λ)

1 − exp(−λ)

∫
1

0

epλx − 1

x
dx .
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Proof of Lemma 6.2. Since N follows Poisson distribution, we have

E

pN

N
=

∞∑
n=1

e−λλn

(1 − e−λ)n!
·
pn

n
=

e−λ

1 − e−λ

∞∑
n=1

(pλ)n

n! · n
(A.11)

=
e−λ

1 − e−λ

∞∑
n=1

∫ pλ

0

un−1

n!
du =

e−λ

1 − e−λ

∫ pλ

0

∞∑
n=1

un−1

n!
du (A.12)

=
e−λ

1 − e−λ

∫ pλ

0

1

u

(
∞∑
n=1

un

n!

)
du =

e−λ

1 − e−λ

∫ pλ

0

eu − 1

u
du (A.13)

=
e−λ

1 − e−λ

∫
1

0

epλu − 1

u
du . (A.14)

The sequence of infinite summation and integral can be interchanged in the second line, because

the series

∑∞
n=1 u

n/n! is uniformly convergent for finite u. The last equality can be obtained by

changes of variables in the integral. When p = 1, the result degenerates to the special case of

inverse moment of Poisson distribution. Even though the integral is not analytically computable, it

can be easily calculated using numerical integrations. □ □

Therefore finally we have

E µ̂0 = µ

{
τ

e−τ

1 − e−τ

[
(1 −m)

∫
1

0

eτ x − 1

x
dx +

m∑
i=1

(1 − pi )

∫
1

0

eτ (1−pi )x − 1

x
dx

]
+

1

1 − e−τ

[
m − e−τ τ −

m∑
i=1

e−τpi

]}
, (A.15)

which is the exact form of Proposition 2.1.

A-II Sampling π (Θ|J1:Nt , J
′

1:m)

The full likelihood function for J1:Nt and J
′

1:m is

p(J1:N , J
′

1:m |S,π 0) =

p∏
k=1

πbkk0

p∏
k=1

exp(Skkrk )

p∏
k=1

p∏
l=0,l,k

SNkl
kl (A.16)

where Sk0 = s0k , bk is the number of jump processes with starting state equal to k , rk is the total

time spent in state k , Nkl is the total number of state moves from k to l , and Nk0 is the total

number of absorbing moves from state k to state 0 across all the paths {J1:Nt , J
′

1:m}. According to

Skk = −
∑
l,k Skl − s0k , we can rewrite (A.16) as

p(J1:Nt , J
′

1:m |S,π 0) =

p∏
k=1

πbkk0

p∏
k=1

exp(−s0krk )

p∏
k=1

p∏
l=0,l,k

SNkl
kl exp(−Sklrl ). (A.17)

This forms a product of p2 kernels of Gamma distributions and a kernel of Dirichlet distribution.

Consequently, if we choose independent conjugate priors for each parameter, we will get (7).
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