

Improving Manual Concrete Building Facade Inspection with Machine Learning

IE3100R Systems Design Project Group 2 (AY 2018/2019) Department of Industrial Systems Engineering & Management Group Members: Lim Yan Hwee Jonathan, Yang Jia Long, Yeo Hwee Cheng Clara, Yuan Jiahui, Zheng Yurong SDP Professor: Liu Yang | Industrial Supervisor: Cindy Chiow

Company Overview

Airbus Aerial is a commercial drone startup under Airbus which leverages on existing aerospace technology to provide imagery services across applications such as insurance, agriculture, building inspections etc.

Project Overview

Project Motivation

Problems with Current Manual Building Facade Inspection process

Subjective

As such, drones are increasingly deployed to speed up inspection

processes.

Machine Learning is used to process image data, to standardise defect identification process.

Key Objectives

To evaluate the usage of CNN machine learning models in facade defects inspection

Skillsets Applied

Statistical data analysis Machine Learning using Python programming

Methodology

Data Collection

Base CNN Architecture Hyperparameter **Optimisation**

Accuracy Analysis

Further Improvement (MobileNet CNN)

Recommendations & Conclusion

Data Collection

Scraping

To build database

Slicing

To increase images in database

Rotation

To increase robustness of training data set

Explanation of CNN Layers

Filter is slid over the input image to calculate dot product output across which enables the model to learn specific features

Pooling Layer

Max pooling reduces

spatial size and thus the

Epoch (EP)

number of parameters

1 2 3 4

ReLU Function

Activation

Function

Performs nonlinear transformations

Sum weighting of features in previous layers

FC Layer

Fully

Connected

Layer

Softmax Function

Softmax **Function**

Outputs a probability distribution of the input image being in each class

Base CNN Architecture

Input layer is customized to take in images of dimensions 224*224*3, which represents width, height and depth

Hyperparameter Optimization

and computation

Varying 3 different hyperparameters for 5 chosen intervals to find out the combination that leads to the highest accuracy amidst 125 configurations

Confusion matrix Performance measurement for machine learning classification algorithm

TP + TNAccuracy = TN + FP + FN + TP

100 0.00001 0.0001 0.001 0.00005 0.0005

> Type II Error False Negatives(FN): the images for which the algorithm predicted no defects but the images have defects When defects are not detected, this poses a safety risk

Accuracy Analysis

Type II error is another metric that should be

considered when deciding the best combination

A better combination can be further finetuned to achieve better accuracy by using smaller intervals

hyperparameter.

The best accuracy

83% belongs to

combination of

125 EP, 32 BS and

the parameter

0.0001 LR.

for each

Benchmarking

Chaiyasarn et al.	Our Base CNN Archi.
Inspect heritage buildings	Inspect building facades
2 classes	5 classes
Test accuracy 67.5%	Test accuracy 83% 🤶

Further Improvements

MobileNetV2

Using depth wise separable convolutions which replace traditional convolutions - reduce computation and parameters.

Model with Transfer Learning

Where pre-trained weights from Imagenet Transfer is used Learning Hence model does not have to learn

from scratch

Accuracy: 38.7% to 63% Type II error: 11.8% to 65.8%

Earlier layers are untrainable, which are crucial for defect detection

Model w/o Transfer Learning

Best performing accuracy of 94.6% with 0% Type II error

Hyperparameter combination of 150 EP, 16 BS and 0.0001 LR

Type II Error (%)

actual

FP

TN

Confusion matrix

Limitations

Limited capability of CPU - Unable to run 128, 256 BS on MobileNetV2

Lack of representative data for all classes - Limited to 1000 images per class

Long training time required for MobileNetV2

Future Direction & Conclusion

Use actual image data captured by Airbus drones

Identify multiple defects in a single image

Overall accuracy and Type II errors should be considered as performance indicators for hyperparameter optimization

