

NUS Mentors: Assoc Prof Ng Kien Ming, Assoc Prof Ng Tsan Sheng Adam | IBM Supervisors: Ms. Wendy Ee, Mr. Rex Foo Group Members: Krishnan Morvil, Hu Zhenzhen, Xiong Wei, Han Tianzhuo, Guo Siyu

Problem Statement

At IBM's 4 year old server manufacturing and storage facility, accumulation of shipping orders towards year end has placed undue constrain on existing space and resources within the facility. Subsequently,

- 1. Additional inventory has to be move to an external warehouse, at a cost of about S\$ 40 000 annually.
- More equipment has to be leased and additional manpower hired and trained, which incurs 2. further costs.

Objective

- Provide space optimisation solutions that has a positive Return of Investment (ROI) over a 10 year period and creates minimal changes to existing facility layout.
- 2. Make recommendations to optimise shipping process, which can reduce manpower and equipment requirements while meeting target throughput rate of 20 orders/hour.

END TO END LOGISTICS OPTIMISATION

Department of Industrial and Systems Engineering | IE300R System Design Project AY 2013/2014

Problem Analysis and Model Building

Space Optimization Phase 1: Analysis on Demands and Resources

- > During year end, there is a space deficit for storing approximately 150 ARBO's and cover kits each.
- ► ARBO's and cover kits require transportation by Reach Trucks, whose turning radius is 4 meters, whereas distance between racks in current warehouse is only 2.8 m
- ➤ Vacant and underutilized spaces in the warehouse were identified and studied for introduction of new racking.

Receiving Warehouse Layout

Phase 2: Racking

Plan			
		2 2	
N2	8	KKK Al	٩l
		A.I	۹ı
ft the entire	c	A11 A11	All
d line of	C	A.I. A.I.	A.1
from the		A.1	品 ^{A.1}
nd build 16		A1	NA PARTY
racks along	A	Al	A1
		A1	41
111.	B	A1 A1	41
	c	41	41
ates storage	c	3 8	AI
for 26	c	<u>4</u>	14
D's and 198		A.I.	c
kits.		A.L	c
	A	A.I	c
	<u> </u>	Al	c
		A.1	- 0
		13 13	

Process Optimization

Phase 1: Building Simulation Model of Existing System

- > Identify the principal activities in the shipping process and the resources involved.
- > Build and validate a simulation model that reflected current warehouse operation.

Main activities in shipping process in order of conduct

Phase 2: Improvement by Manpower Reduction

- Target throughput rate of 20 order/hr for shipping process for duration of whole day (set by IBM) was calculated to require a total of 33 crews
- ▶ In actuality, this throughput rate only hits 20 orders/hr at certain periods during the day.

	Normal Lane	OBS lane	Total
of Lanes	8	1	9

Recommendations and Conclusion

Space Optimization

- Both Plan 1 and Plan 2 will bring about satisfactory ROI's with a reasonable initial investment, if 2. the current storage space demand and external rental cost avoids large fluctuations.
- While it does not dramatically increase overall storage capacity, Plan 2 offers a greater flexibility 3. 2. in storage at the price of higher initial investment cost.

Process Optimization

- It is proven by the model that the crew capacity of 33 is beyond what is required by the system and can be reduced.
- Reduction in manpower to 24 crews would generate a throughput of 22.7 orders/hr which would still fulfill the target of 20 orders/hr.
- Implementation of order-based storage (OBS) on top of reduced manpower would generate a throughput 28.6 orders/hr, a significant increase from target.