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Current process monitoring tools :
X-bar chart & Sigma Chart

 Detect abnormalities in the mean and the
variance of a particular layer of the sample
wafer in-line

* Unable to detect abnormalities in the profile
of the layer in-line.

* Abnormalities only discovered near the end
\_ of the manufacturing process
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Improve performance of the
process by introducing a
profile indicator that
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to 8 weeks. Wafers with profile
issues are only detected Ilate
during the electrical test.

Front-End & Thin-Film

Detects wafers with
profile issue in-line

Utilizes the readily
available data
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Minimizes “false-alarm”
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- Approach

Wafer Profile Indicator

Define Problem
& Objectives

* Logistic Regression

* Support Vectors Machine

Understand

Wafer ey

Fabrication

Conclusion

Implement the
profile indicator

* Executable software Stratified Cross Validation

* R Programming

- Validate Models
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Wafer fabrication process takes 6 Logistics Regression (LR)

LR is a predictive statistical model that aims to construct a
parametric curve which best fits the observations.
transforms the dependent variable, i.e. the probability of a

WY wafer having issue, to its logit function (Logit function is the

sioningots| inverse of the sigmoidal logistic function). A suitable threshold

. A can be drawn, above which an “issue detected” alarm will be
| triggered.
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Processes = Single Variable Logit Function : Multi-variate Logit Function
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Y linear product terms at the
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: Support Vectors Machine (SVM)
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« - Misclassification of points is inevitable. By adjusting both the
. degree of model separator and the cost constraint value, C,
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Misclassified @
point

-+ will affect the values of alpha- and beta-errors.

SVM classify the data by recognizing patterns and separating
. the defected units from the non-defect units.
A hyperplane is generated such
that the distance between the
hyperplane and the nearest data
point on both sides is maximized.
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To ensure that (1) the model is able to detect the defects and (2) to achieve a low alpha-
error with a reasonable beta-error, Stratified Cross-Validation is used to verify and

- Implementation_

@ Site Measurements

. @ Raw Data
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Qnd separation parameters (in SVM) are to be selected for an acceptable error allowancej
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Alpha error and beta error is inversely proportionate. Suitable cut-off probability (in LR) Results show promising potential for implementation in GlobalFoundries




