

Department of Industrial & Systems Engineering — Systems Design Project

Cluster Industrial Complex with Megahoist

(CICM) System

Team members: Hu Wenjun / Ning Chao / Clement Ying / Zhou Bin (Group 11)

Supervisors: Dr Adam Ng / Dr Chen Nan

Background

- New concept of an industrial complex
- 100% container movement done through electric hoists
- Hoists installed in atrium that splits complex into two blocks

Problem Definition

- Test if current design is optimal
- **Performance measures**
 - Platform utilization
 - **Hoist utilization**
 - Queuing time
 - Queue size
- **Parametric Modelling**
 - Change in levels
 - **Reduction in footprint**

Methodology

1. Workflow Analysis

2. Basic Model

	3 4	20	34	
	3	na na	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53
T.	DEDEDE	1 1		
Ŀ		*****	****	
	rh rh	ch	-	
	_	蓋		
		Basic Model	-	
Dar	ameters:		OSWI HAZ	

Arrival (Containers/hr)		V Platform Dwell Time (hrs)	(Containers/hr)	Parallel Platform Dwell Time(hrs)	
3	2	1	6	12	1
1	2	6	6	2	3
3	24	1	6	12	1
3	24	6	12	2	1
6	2	1	12	6	1
		Non-Peak Ho	our Parameters		

b) Verification and validation:

Verification: Basic model is comparable to JTC's model.

Validation: Sought approval from JTC.

3. New Models

a) Increase in levels:

Rationale: Test if utilization increases when number of levels are increased. Model designs tested: 8 and 10 levels.

b) Reduction in footprint:

Rationale: Land scarcity issues so basic model may be too large for practical use; test for utilization changes if footprint reduces. Model designs tested: 10%, 20% and 40% reduction in footprint.

a) Increase in levels

Result Analysis

b) Reduction in footprint

- Increase in hoist utilization
- Decrease in platform utilization
- No appreciable differences in queuing time and queue size

Crane Utilization for change in footprint <u>արգետակարհեր հետակարհեր ՄիՄիՄի</u>Մի

- Increase in hoist utilization
- No appreciable differences in platform utilization, queuing time and queue size

Conclusion

Compared to basic design, 8 level design with footprint reduced to the minimum amount of space required by the tenants is recommended.