
SDP Project: Reliability Study of Commercial Electrical System

Presented By: Li Linli, Lim Ri hao, Wang Yixiang, Yang Lingxiao, Zhang Xiaoying Supervisors: A/Prof. Tang Loon Ching, Asst. Prof. Kim Sujin

1. Objectives

The team will look into factors affecting reliability of the electrical systems currently in use by Company Beta. The team will then propose possible precautionary measures in addressing some of the critical failure modes

ault_2 ault 3

Fault_4 Fault_5 Fault_6

'ault_7 'ault_8

ault_9

Fault_10 Fault_11

El taba banço Alece concie fine i faite - engrátir - Conque Nindi - Macion I alece Nontre Terrer <th

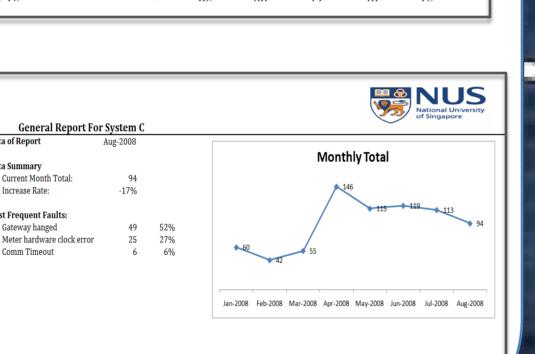
problems earlier before they can become critical

2. Problem Description

Fig A.1 Automated Pivot Table Generation

3A. Daily Monitoring

Standardize Valid Entry in Dropdown List to minimize human Error
Enable the function to modify valid entries and automatically map fault type and fault category to avoid inconsistent definition

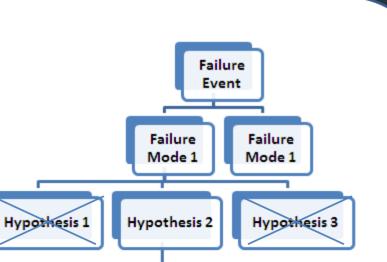

• Use VBA to automate Pivot table generation

 Construct Exponentially Weighted Moving Average (EWMA) Chart to monitor monthly fault rate

3B. Problem Reporting

- Automatically raise red flag when the monthly fault rate exceeds the control limit
- Identify critical fault type for investigation
- Calls to attention for fault type with increasing fault rate
- Suggest remedial actions for critical fault type

Create Prot Table for fast Restitution Create Prot Table for No. of Days Response							Create Road Table for Sta. of Job Dane Create Road Table for Sta. of Job Dane							
			at sectors		Creative	COLUMN FOR NO. OF	nels sectores	_	CARD FINIS CAUSE	10.00	Job Dore	Create Monthly	y Seminary 1954	-
He .	-	-	Type of Meter 201	Type of Installs	Fander B	Marter Mart	Address		Interfact		Actual Fault	Contrast Calegora	Corners Margar	-
	7006	*		TALL.	Al	A32458	1 Kiert Ridge		Fault 1		Paul 1	Category 1	1	
16-1	2506	8	X	1707	44	00969A	2 Kert Ridge		Fait 2		Fed2	Calepory 2	2	
104	2006	A	¥	1707	A8	87394H	3 Kent Ridge		Fault 3		Fault 3	Calegory 5	1	
3012	2008			LTCT	At	A12438	4 Kard Ridge		Fault 4		Fault 4	Category 2	2	
305.3	2006	-A.	x	LTCT	Ad-	A4946D	S Kert Ridge		Fault 5		Fault5	Category 2	2	
26-1	2006	A	ж	LTCT	Al	87968C	6 Kent Ridge		Fault 6		Fault 3	Category 2		_
18-1	2506	8		1707	. 1	A3885C	7 Kart Ridge		Fault 4		Feul 2	Ealegory 1	2	
200.2	2006		Y	LTCT	. +	C4966D	8 Kent Rubps		Fault 5		Peut 2	Category 2	2	
26.4	2006		x	LTCT	A8	871900	9 Kerd Rolys		Fault 8		Paul 3	Category 1.	2	
18.3	2006		x	LTCT	All	030498	10 Kert Ritge		Fault 10		fed2	Category 4		
10-1	2006	A	W.	1707	Al	A4196D	11 Kent Rdge		Fault 2		Fault 3	Category 3		
1.0.1	inné			1.957	44	97354C	12 Kart Rabie		Faul 3		Fault	Calenniy 2		-



Benus

Fig B.1 VBA Display for Problem Reporting (Data is disguised, for illustration purpose only)

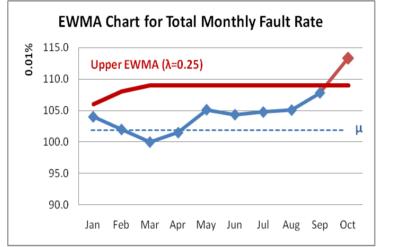
3D. Logic Tree and Fault Correction

- All hypotheses are supported with data collected in the categories of parts, position, people, paper and paradigms
- Maintain a verification log on a continuing basis to document supporting data

Physical Root

Cause

Human


Root

Cause

Latend

Root

Cause

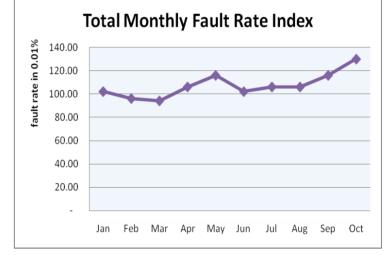


Fig A.2 VBA Display for daily monitoring (Data is disguised, for illustration purpose only)

We propose to improve on the existing system by adopting monitoring

measures such as trend analysis and control charting to spot and address

3C. Failure Mode & Effect Analysis (FMEA)

Build FMEA as a periodical record on the electrical systems in service
Once an incident occurs, FMEA table is used as the first step in Root Cause Analysis to identify the most likely root causes

Subsystem	Mode	Effect on Entire System	Severity (1-10)	Probability (0-1)	Critical
	Mode 1	Effect 1	9	0.0002	0.0018
	Mode 2	Effect 2	1	0.0010	0.001
	Mode 3	Effect 3	8	0.0007	0.0056
	Mode 4	Effect 4	4	0.0020	0.008
	Mode 5	Effect 2	9	0.0026	0.0234
Cuberrate 1	Mode 6	Effect 3	9	0.0020	0.018
Subsystem 1	Mode 7	Effect 4	4	0.0012	0.0048
	Mode 8	Effect 4	9	0.0008	0.0072
	Mode 9	Effect 4	5	0.0002	0.001
	Mode 10	Effect 2	3	0.0014	0.0042
	Mode 11	Effect 4	8	0.0307	0.2456
	Mode 12	Effect 4	9	0.0022	0.0198
	Mode 13	Effect 4	2	0.0060	0.012
	Mode 14	Effect 4	9	0.0100	0.09
Subsystem 2	Mode 15	Effect 2	2	0.0230	0.046
	Mode 16	Effect 4	4	0.0089	0.0356
	Mode 17	Effect 4	6	0.0087	0.0522
	Mode 18	Effect 3	4	0.0028	0.0112
Subsystem 3	Mode 19	Effect 4	1	0.0392	0.0392

Identify possible faulty subsystems based on previous full FMEA table, and hence within a short time, time and effort can be allocated to those failure modes under
Subsystems with a relatively high probability of being the root cause of the problem.

Fig C.1 FMEA Table (Data is disguised, for illustration purpose only)

3E. Trend Analysis

• Remove Critical Fault type to obtain the base line fault rate

- Identify Root Cause at Physical, Human and Latent level
- Learn from root cause to improve daily operation
- Provide basis for fault correction

Fig D.1 Logic Tree

4. Conclusion

- A rigorous framework to effectively identify critical faults
 Qualitative Solution: Logic Tree
 - •Quantitative Solution: FMEA Analysis, Trend Analysis
- VBA Tools developed to aid daily monitoring and problem reporting
- Proposed Power Law Process for future reliability study of repairable systems

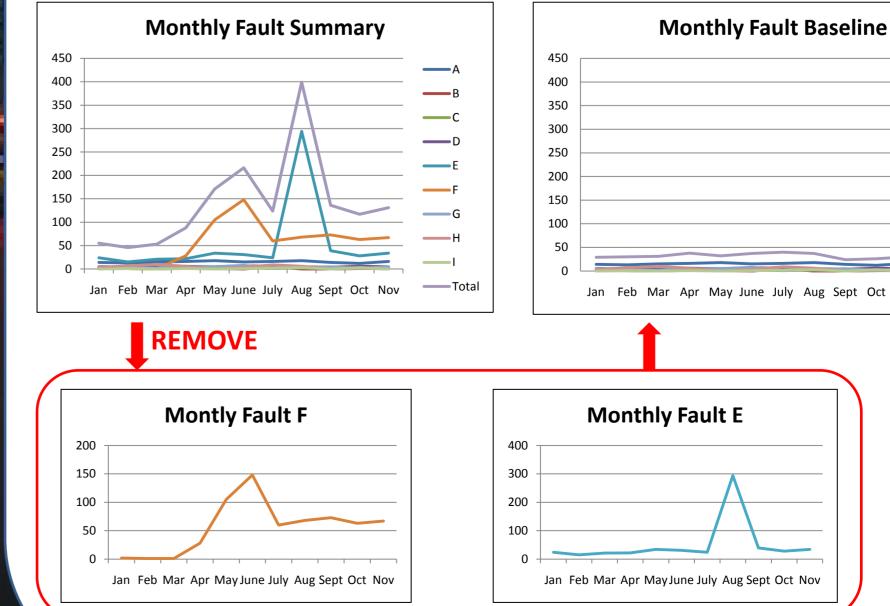


Fig E.1 Graphs of Trend Analysis (Data is disguised, for illustration purpose only)