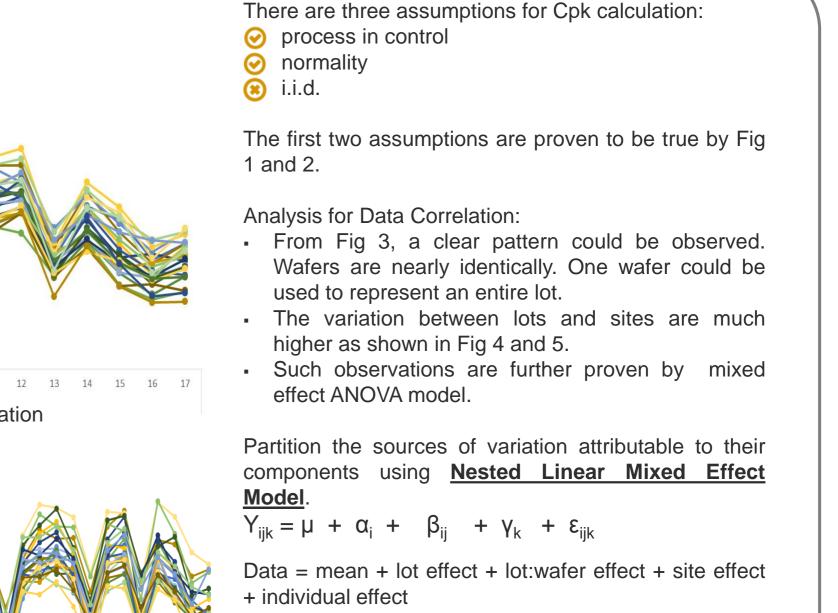

Cpk Calculation on Highly Correlated Data Relationship Between Scrap Based on Certain Criteria & Cpk Value

Company Background

- The world's first full-service semiconductor foundry
- The world's second largest independent foundry
- First foundry to ramp High K Metal Gate 32/28nm technology to high volume
- Dedicated to foundry innovation leadership and customer-centric services

Data Analysis


Problem Definition & Objectives

2

Find the right minimum sample size that is required for C_{pk} confidence interval calculation, taking data correlation into account

Use C_{pk} value to predict the number of wafer scrap at ET, taking data correlation into account

0.17	0.17	🚺 🔥 🖌 🕅 🕺 🕅		Groups	Variance	
0.16	0.16			Lot: Wafer	2.050E-05	
0.15	0.15			Lot	3.365E-05	
WILL WILL WILL WILL WILL WILL WILL WILL	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 L107	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 L121	6 7 8 9 10 11 12 13 14 15 16 17 L25	Sites	4.665E-05	
Fig 4: Site Correlation	F	Fig 5: Between Lots Correlation		Residual	2.091E-05	

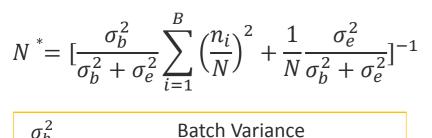
Solutions

Part I: Re-examining the C_{pk} Confidence Interval Formulation

Method 1: Use one wafer to represent one lot

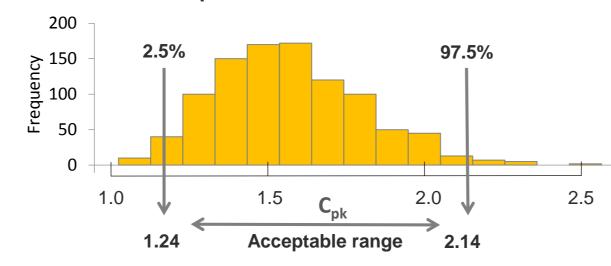

An approximate $100(1-\alpha)\%$ confidence interval for C_{pk} is

$$\widehat{C_{pk}}\left[1 - z_{\alpha/2}\sqrt{\frac{1}{9n\hat{C}_{pk}^2} + \frac{1}{2(n-1)}}\right] \le C_{pk} \le \widehat{C_{pk}}\left[1 + z_{\alpha/2}\sqrt{\frac{1}{9n\hat{C}_{pk}^2} + \frac{1}{2(n-1)}}\right]$$


Based on the process nature and further supported by data analysis, 1 wafer is typically representative of the lot

Example:

Using the data above, for 95% confidence interval


Method 3: Effective Sample Size

Method 2: Monte Carlo Simulation

If customer buys x lots, we do Monte Carlo Simulation with x lots

- 1. Randomly select x lots from the entire pool
- 2. Repeat for 1000 times
- 3. Sort and obtain 25th and 975th data as the Confidence Interval
- 4. If customer's C_{pk} falls within the range, it is acceptable

Example: if *x* = 5 within 108 lots

Step 1: Taking wafer effect as batch effect, Calculate the effective sample size for a single lot, $N^{\ast}_{\ 1}$

 $\sigma_b^2 = 2.05\text{E-}05; \ \sigma_e^2 = 6.76\text{E-}05; \ n_i = 17; \ N = 17^*25 = 425; \ B = 25 \implies N^*_1 = 89.95$

Step 2: Taking lot effect as batch effect, Calculate the overall sample size for L lots, N*

Part II: Predicting the Wafer Scrap Rate with Multivariate Normal Distribution P(Wafer defective) = P(>50% sites defective) P(3 sites defective) P(4 sites defective) P(5 sites defective) Considerations Each site follows normal distribution ✓ Joint distribution of the sites Take correlation into account \checkmark Scrap criteria = 50% • Formulation with *n* sites: $f_x(x_1, \dots, x_n) = \frac{1}{\sqrt{(2\pi)^n |\epsilon|}} \exp(-\frac{1}{2}(x-\mu)^T \sum_{k=1}^{-1} (x-\mu))$ $x \sim MVN(\mu, \epsilon)$ **For predicting scrap rate using Cpk confidence** interval, a table is developed by MVN ✓ Less accurate but still a good approximation ✓ More cost effective ✓ Less data intensive

5 Sites	Average Correlation					
Cpk	0.3	0.4	0.5	0.6	0.7	0.8
0.5	7,600	11,200	15,700	21,000	27,400	34,500
0.6	1,400	2,600	4,200	6,400	9,000	12,400
0.7	209	470	889	1,521	2,460	3,755
0.8	23	66	157	296	575	955
0.9	2	8	23	51	84	195
1.0	0	1	2	15	23	33

0	b^2	Batch Variance
0	e^2	Individual Variance
r	ι_i	Number of samples in ith batch
	N	Total sample size
	В	Number of Batches

 $\sigma_b^2 = 3.37\text{E-}05; \ \sigma_e^2 = 8.81\text{E-}05; \ n_i = 89.95; \ N = 89.95*108 = 9714.6; \ B = 108 \implies N_2^* = 380$

Confidence Level	Effective Method	Original Method
95% CI-Low	1.379	1.48
95% CI-High	1.601	1.50

If $C_{pk} \approx 0.6 \pm 0.1$ with correlation 0.8, scrap rate $\approx [3,755 - 34,500]$ ppm

Evaluation and Conclusion Summary Identified key sources of variation in correlation Proposed 3 methods of computing confidence interval catering to different needs Developed new method of predicting wafer scrap rate given C_{pk} CI Proposed 3 methods of computing confidence interval catering to different needs Developed new method of predicting wafer scrap rate given C_{pk} CI Future Development Image: State of the process of the process

IE3100R Systems Design Project AY13/14, Department of Industrial & Systems Engineering Group Members :Huang Chengyuan | Huo Haiyan | Khor Yuan Jun | Liu Yehan GlobalFoundries Supervisor: Lee Koong Leng | NUS Supervisors: A. Prof. Ng Szu Hui | A. Prof. Chen Nan