AUTOMATED TOOL TO EVALUATE SPOT SOLVER

Introduction

Infineon technologies AG focuses its sales efforts on semiconductors customized to meet its customers' demand. With complex product combinations, each product is required to undergo different combination of tests. In order to improve the overall efficiency of production, an automated Scheduling and Planning Tool (SPOT) is recently implemented to replace manual scheduling in order to optimise the testing process and make production predictable. This project aims to evaluate the performance of SPOT.

Project Roadmap

Problem Formulation:

- Understand the purpose, objectives, constraints, inputs and outputs of SPOT
- Identify problems.
- Define evaluation criteria

Indicator Generation:

- Generate indicators to measure similarity between schedules
- Propose 2 methods of calculation

Automation :

 Create excel VBA to generate indicators

Results Analysis & Application:

- Assess SPOT's schedule stability within certain time period.
- Conduct regression analysis, component analysis of equipment.
- Conduct correlation analysis between compliance and stability

Processing time

0.70

0.60

0.30 to 0.20

0.10

0.00

0.90

Recommendation:

- Assess solver stability by reducing schedule generation interval
- Analyse lot level • stability analysis

Methodology

Conceptualization

Predictability of schedule allows preparation time for future production activities Stability: Degree of similarity between two adjacent schedules within a comparison time frame .It is a pre-requisite for predictability **Stability Index:** Range from 0 - 1 to represent the stability of a schedule

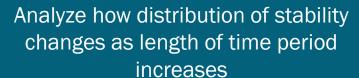
Preliminary Des	ign		Algorithms			
			Between adjacen compare by ec			
Adjacent schedules Stability	Stability Index	Individual	Within chosen time p			
Input Evaluation	Output	equipment	stability for specifi	c equipment		
(1) Setup parameters			Setup parameters	Processing tim		
TemperatureChange kit ID						
Handler ID	Equipment level	[Generate distribution	• •		
Load board ID	0_0	All equipments	stabilities in enti	reschedule		
(2) Processing time		equipmente	Analyze how distribu	tion of stability		

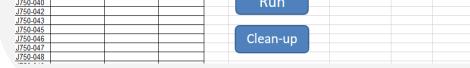
Automated Tool

1st method: Reward for completely same setups 2nd method: Some reward for similar setups

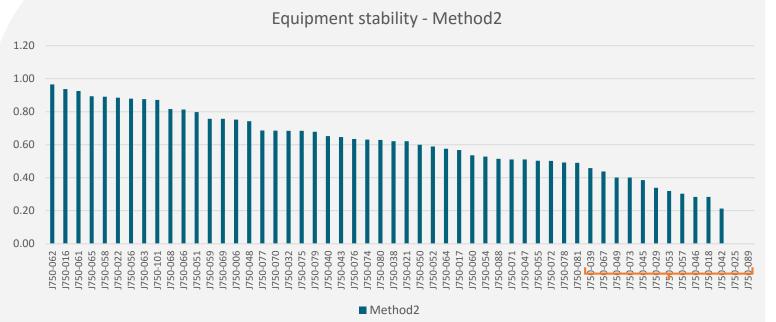
	Parameter A	Parameter B	Parameter C	Parameter D	Stability index
M1	Same	Same	Same	Different	0
M2	Same	Same	Same	Different	0.75

*The weightage assigned to each parameter is default to be 25%

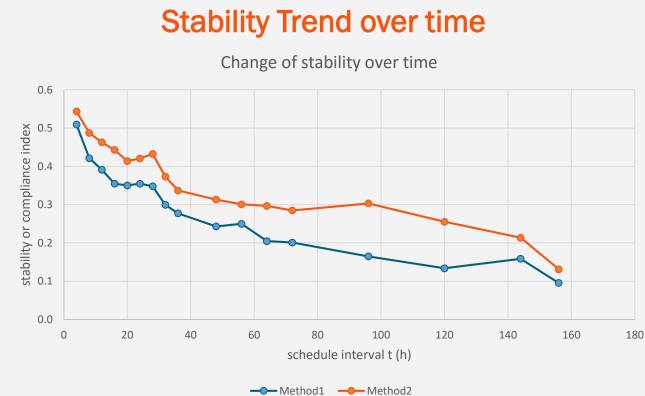

Tester ID	Equipment S	tability Index	Compliance	Compliance	Compliance	ndex Compliance	Alpha	Schedule Interval	Time Frame	
	Alternative 1	Alternative 2		0.5	240	960				
J750-006										
J750-010				Alternative 2 Weightage						
J750-016				Temperature	Handler	Changekit	Loadboard			
J750-017				0%	0%	0%	100%			
J750-018										
J750-021				Alternative 2 Time Threshold						
J750-022				10%						
J750-025										
J750-029										
J750-032										
J750-038										
J750-039										
1750 040				Dup						


A collaboration between NUS and Infineon

Schedule level

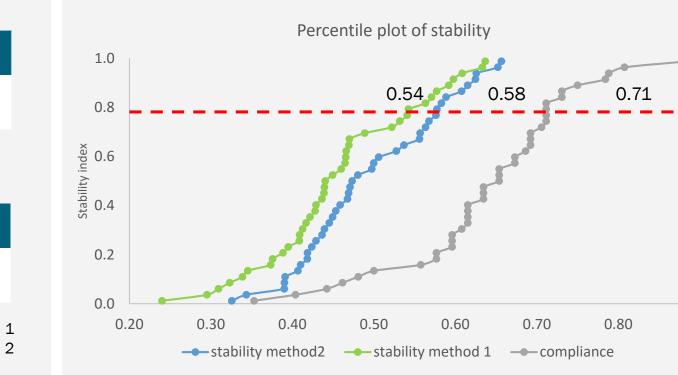

Analysis

 \mathbf{O}


completely unstable

Equipment Level Stability Index Analysis

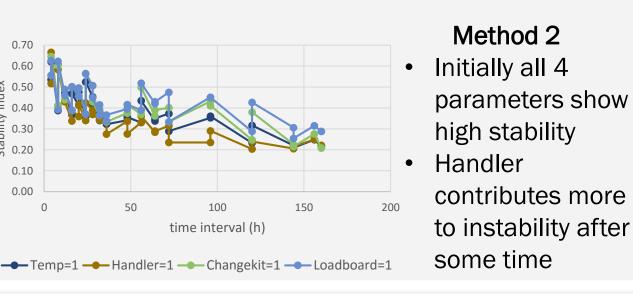
completely stable



- Pareto analysis based on 40 sets of result
- Bottom 20% of the unstable testers are identified.
- Further investigations could be done to analyze the reasons for instability for these testers. Whether they are due to operational constraints or solver issues.

- Schedule stability decreased exponentially over time.
- E.g. stability index = 60% with schedule interval of 4hr. It means using schedule 1 for 4 hours would ensure that the production is 60% optimized

SHORT TERM Stability index target setting



• Use empirical data to estimate distribution of stability index

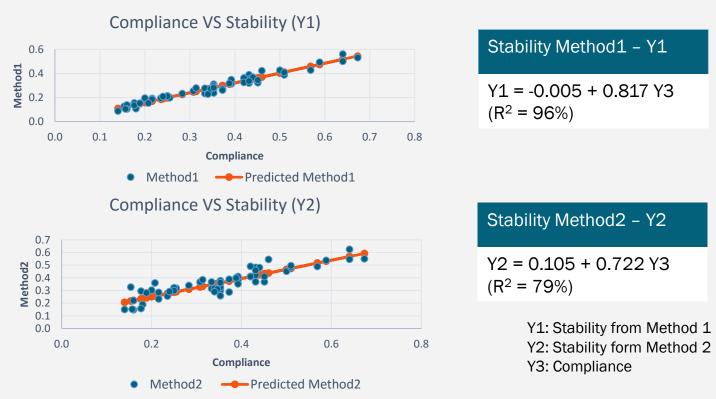
Impacts of 4 setups on schedule stability

Method 1 • Unable to differentiate the impacts of individual components on stability index

LONG TERM Stability index target setting

Compliance target = 85%

Stability Target Setting Method1 – Y1


Y1 = 0.005 + 0.817 Y3 Target = 0.005 + 0.817 * 85% = 0.70

Stability Target Setting Method2 – Y2

Y2 = 0.105 + 0.722 Y3 Target = 0.105 + 0.722 * 85% = 0.72

Since 80% of instability are correlated with compliance, we can use the compliance target set by Infineon to set target for stability index

Relationship between Compliance & Stability

Compliance and stability of schedule are strongly correlated.

- Problems with compliance correlates with about 80% of drop in stability.
- Set upper 20 percentile as the target
- Revise target after major solver change
- Revise the relationship between compliance and stability after major compliance/solver changes.
- Revise target. •

Special Thanks to

Infineon supervisor Ms. Zou Siyuan Infineon advisor Mr. Sim Wee Sien **Department Supervisor** Assoc. Prof Lee Loo Hay Asst. Prof Ye Zhisheng

Group Members Li Shi Lim Wen Yang Nicholas Liu Zhiyue Ma Xiaojing Maytavee Tansrisuwarn

Recommendation

• Compliance is closely related to schedule stability. Compliance issue, as the most significant factor, explains around 80% of schedule instability. Besides non-compliance, SPOT solver might explain up to 20% of the instability observed. With current compliance status and spill over effect on subsequent schedules, estimation on solver stability would be inaccurate.

Action item 1:

- In the near future, use stability index to assess and improve on solver stability when compliance increases significantly (with shorter schedule run interval)
- Identify solver's limitation and make improvement.
- With each improvement in SPOT solver algorithm, compare its stability with previous versions to assess the impact of solver improvement
- Track the performance of SPOT over time with stability index

Action item 2:

- After the solver is stabilized, use stability index to assess the schedule instability due to operational problems.
- Based on the recommended benchmark, assess whether operations required further improvement. Action Item 3:
- After lot dispatching is implemented, use lot level schedule stability index to assess the solver's performance **Application**

Infineon is able to identify the right schedule-run interval, given a x% level of schedule stability.