National University of Singapore

Department of Industrial and Systems Engineering I System Design Project

Predicting Patient No-Show Rate to Increase Scheduling Efficiency

Supervisors: Associate Professor NG Kien Ming, Assistant Professor CARDIN Michel-Alexandre Group Members: Xiao Yao, Yu Qian, Zhang Yue, Zou Yang

Fig 1. No-Show Rate in Selected Specialties

Background

One year medical appointments data with an average of 2000 appointments per day were studied. Almost 15% of these patients did not show up for their appointments. High no-show rate interrupts normal clinic operation. More importantly, not coming for appointments may hinder patients' recovery.

Fig 1 gives a breakdown of no-show rates across some frequently visited specialties in 2011. An illustration of the current appointment making practice is shown in Fig 2.

Objective

>>> Identify potential patterns in patients' no-show behaviour;

Minimize no-show rate;

>>> Optimize resource utilization.

Fig 2. Current Appointment Making Process

Possible Factors

Fig 3 shows the team's initial postulate about possible factors which may influence the no-show behaviour of patients. Patients across different age groups and genders, staying in different regions, of different marital status usually demonstrate different levels of no-show tendency.

Fig 6. Patients in Specialty F have greater tendency for "no-show" given their past no-show rate

Fig 9. Simulation Logic for Overbooking

Predictive Model

Jan to Sep 2011 data is used for model building while data from Oct to Dec 2011 is reserved for validation. Two predictive models for patient no-show probability are proposed.

Model 1 uses logistic regression with predictors such as age, gender, distance from clinic, specialty, past no-show rate, referral code and subsidy category. Model chi square = 30968.27 with 88 degrees of freedom and p-value = 0.000. Figure 4 visualises the effect of selected factors on fitted no-show rate. The shaded region represents the 95% confidence interval of mean. Fig 5 and Fig 6 show the effect of combinations of factors.

Fig 4. Effect of Selected Factors on No-Show Rate

Model Validation

Although Model 2 uses an extra procedure to account for individual patient's no-show behaviour, it is out-performed by Model 1 in terms of Hosmer-Lemeshow goodness of fit. This may be due to the limited time span of available data (1 year). We have therefore decided to use Model 1 for the later part of the study.

Nevertheless, Model 2 can be useful because it has the advantage of being able to self-update when longer period of data is accumulated in the future.

rates are higher, more patients will be scheduled for the day. On the other hand, if many scheduled patients have low predicted noshow rate, less patients will be scheduled;

Fig 10. Minimizing Cost by Adjusting Cut-off Point for Expected Number of Patients Showing up

Model 2 uses Bayesian inference to update a logistic regression's initial prediction. The prior distribution is assumed to be beta distribution. $\dot{\alpha}$ increases if a patient fails to show up for one appointment and β increases if he shows up. As seen in Fig 7, the model reacts by increasing a patient's predicted no-show probability if he failed to show up for the last appointment. The opposite happens if he shows up.

Fig 5. Patients between 20-40 years old from A&E Department are more likely to become "noshow" cases

A simulation of 1000 trials was conducted to validate the prediction. 62% of the time, Model 1 predicts the number of no-show within an error of three for every 100 appointments.

Proposed Solution

- >>> A potential way to reduce waste of resources caused by no-show patients is to schedule more patients to the existing timeslots;
- >>> Overbooking cost, ^c_o in the form of staff overtime and patients waiting is incurred when more than expected number of patients show up; Opportunity cost, c_u in the form of lost consultation fee is incurred when less patients show up than a clinic can handle;
- >>> A modified version of the traditional Single Period Inventory Model is proposed;
- >>> Model 1 is used to calculate the expected number of patients showing up, m_k ;
- When m_k as predicted by Model 1 reaches the optimal cut-off point

- \rightarrow For the case where daily capacity, $s_c = 36$, assuming average consultation fee, $c_u = \$76$ and $c_o =$ overtime pay = \$100, total cost is obtained by the simulation logic illustrated in Fig 9. Total cost is plotted against different levels of m^* in Fig 10;
- >>> As shown in Fig 10, cost saving of \$259/clinic/day can be achieved when the cut-off $m^* = 35.9$.

Recommendations

- >>> Consider taking into account individual patient's no-show probability when scheduling the appointments. The overbooking policy above illustrates a possible way to reduce opportunity cost due to patient no-show;
- >>> Continue collecting no-show data. We have demonstrated that past no-show record is a good predictor of future no-show probability;
- >>> Consider devoting more resources to SMS and letter reminder systems as they are shown by the statistical model to be more efféctive compared to electronic medium such as email reminders.