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Fig 1.  No-Show Rate in Selected Specialties

Current Appointment Making and Consultation Process
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Fig 2.  Current Appointment Making Process

Possible Factors Leading to No-Show
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Fig 3.  Factors Leading to Patient No-Show
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Fig 4. Effect of Selected Factors on No-Show Rate
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Predicted No�Show Rate across Age Groups by Referral Code

Fig 5.  Patients between 20-40 years old from A&E Department are more likely to become “no-
show” cases
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Model 2 Diagnosis (Hosmer Lemeshow Goodness of Fit)
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Fig 6.  Patients in Specialty F have greater tendency for “no-show” given their past no-show rate

Fig 7.  For the following patient who visited the clinics 13 times, the model increases his predicted 
no-show rate whenever he fails to show up (Bayesian inference). (Dummy patient ID is used for 
confidentiality)

Fig 8.  Hosmer-Lemeshow goodness of fit of Model 1(left) and Model 2 (right)

Fig 9.  Simulation Logic for Overbooking

Fig 10.  Minimizing Cost by Adjusting Cut-off Point for Expected Number of Patients Showing up

Background
One year medical appointments data with an average of 2000 appointments 
per day were studied. Almost 15% of these patients did not show up for their 
appointments. High no-show rate interrupts normal clinic operation. More 
importantly, not coming for appointments may hinder patients’ recovery.

Fig 1 gives a breakdown of no-show rates across some frequently visited 
specialties in 2011.  An illustration of the current appointment making practice 
is shown in Fig 2.

Objective 

 » Identify potential patterns in patients’ no-show behaviour;

 » Minimize no-show rate;

 » Optimize resource utilization.

Possible Factors
Fig 3 shows the team’s initial postulate about possible factors which 
may influence the no-show behaviour of patients. Patients across 
different age groups and genders, staying in different regions, of dif-
ferent marital status usually demonstrate different levels of no-show 
tendency.

Predictive Model
Jan to Sep 2011 data is used for model building while data from Oct 
to Dec 2011 is reserved for validation. Two predictive models for 
patient no-show probability are proposed.

Model 1 uses logistic regression with predictors such as age, gender, 
distance from clinic, specialty, past no-show rate, referral code and 
subsidy category. Model chi square = 30968.27 with 88 degrees 
of freedom and p-value = 0.000. Figure 4 visualises the effect of 
selected factors on fitted no-show rate. The shaded region represents 
the 95% confidence interval of mean. Fig 5 and Fig 6 show the effect 
of combinations of factors.

Model 2 uses Bayesian inference to update a logistic regression’s 
initial prediction. The prior distribution is assumed to be beta distribu-
tion. α  increases if a patient fails to show up for one appointment and 
β  increases if he shows up. As seen in Fig 7, the model reacts by in-
creasing a patient’s predicted no-show probability if he failed to show 
up for the last appointment. The opposite happens if he shows up.

*m , stop the booking and mark the day as fully booked;

 » A one-dimensional golden-section search algorithm is used to find 
the optimal cut-off point *m ;

 » Under this policy, the decision variable *m  will be determined as 
a fixed value. However, the number of patients allowed to make 
appointments varies. Intuitively, for specialties where no-show 
rates are higher, more patients will be scheduled for the day. On 
the other hand, if many scheduled patients have low predicted no-
show rate, less patients will be scheduled;

 » For the case where daily capacity, cs  = 36, assuming average 
consultation fee, uc = $76 and oc  = overtime pay = $100, total cost 
is obtained by the simulation logic illustrated in Fig 9. Total cost is 
plotted against different levels of *m  in Fig 10;

 » As shown in Fig 10, cost saving of $259/clinic/day can be 
achieved when the cut-off *m = 35.9.

Recommendations
 » Consider taking into account individual patient’s no-show prob-
ability when scheduling the appointments. The overbooking policy 
above illustrates a possible way to reduce opportunity cost due to 
patient no-show;

 » Continue collecting no-show data. We have demonstrated that 
past no-show record is a good predictor of future no-show prob-
ability;

 » Consider devoting more resources to SMS and letter reminder 
systems as they are shown by the statistical model to be more ef-
fective compared to electronic medium such as email reminders.

Model Validation
Although Model 2 uses an extra procedure to account for individual 
patient’s no-show behaviour, it is out-performed by Model 1 in terms 
of Hosmer-Lemeshow goodness of fit. This may be due to the limited 
time span of available data (1 year). We have therefore decided to 
use Model 1 for the later part of the study.

Nevertheless, Model 2 can be useful because it has the advantage of 
being able to self-update when longer period of data is accumulated 
in the future.

A simulation of 1000 trials was conducted to validate the prediction. 
62% of the time, Model 1 predicts the number of no-show within an 
error of three for every 100 appointments.

Proposed Solution
 » A potential way to reduce waste of resources caused by no-show 
patients is to schedule more patients to the existing timeslots;

 » Overbooking cost, oc  in the form of staff overtime and patients 
waiting is incurred when more than expected number of patients 
show up; Opportunity cost, uc  in the form of lost consultation fee is 
incurred when less patients show up than a clinic can handle;

 » A modified version of the traditional Single Period Inventory Model 
is proposed;

 » Model 1 is used to calculate the expected number of patients 
showing up, km ;

 » When km  as predicted by Model 1 reaches the optimal cut-off point 


