ENHANCEMENT OF INTELLIGENT STOCKS PLANNING OPTIMIZATION USING DYNAMIC PARAMETERS

Department of Industrial and Systems Engineering

IE3100R – SYSTEM DESIGN PROJECT

Team: HO Jun Loong Daryl, ONG Si Hui, TRAN Hue Mai, ZHU Congtian Academic Advisors: A/Prof. NG Szu Hui, A/Prof. CHEN Nan Industry Supervisors: Mr Kesavan NAIR, Mr Susanto SUSANTO

Time

Output

Conceptually proven

Flexible and dynamic

DP = 80%

User friendly

Speedy

DECISION DILEMMA: LOW COST VS HIGH DP

Stock Level:

2

The quantity of goods or merchandise kept in the warehouse and available for sale or distribution.

Delivery Performance (DP):

conditions will persist into the future)

• Future orders reflect the seasonal patterns implicitly

• For replenishment strategy, there is a lower

stocks as compared to goods with volatile demand

• Forecast for the future orders are generally accurate

probability for goods with steady demand to dip into

Key Performance Indicator measurement used in supply chains to measure the fulfilment of a customer's demand to the wish date.

High stock level

Methodology

Objective

Simulation

Revising the stock ratio

last minute order cancellations and added orders

to replenish and how often target stock is changed

• Take into consideration inventory cost

• Keep track of replenishment strategy such as how often

• Enhance the visibility of the data across different

departments to allow ease of exchange of information

- From the simulation results, the new methodology proposed produces delivery performances closer to the target delivery performance of 80%
- Lower stock level is achieved on average for both steady and volatile demand products