

NUS DYSON REPLENISHMENT PROCESS (part I) dyson

Department of Industrial Systems Engineering and Management IE3100R/IE3100M Systems Design Project | Group 16

Group Members: Titus Ong | Felix Fernando | Kevin Christian | Ren Xiao Kai | Sheena Low | Shi Lei | Song Shuang | Zhang Xian NUS Supervisors: A/P Ng Kien Ming | A/P Ng Tsan Sheng, Adam Industrial Supervisor: Mr. Laurent Derien

PROJECT OVERVIEW: To improve the efficiency and decisions of capacity swaps between SKUs during the manual **Extended Period Horizon (EPH)**

1. BACKGROUND

After an SAP optimizer run, planners receive a planned production (PP) which determines the quantity to produce for each market and SKU.

 During the EPH, it does not make changes to the PP for the first 12 weeks.

4. SOLUTIONS

Visualization Tool

Supply planners will manually address shortages alerts during the EPH.

• Most alerts are not resolved before the PP is committed in that week.

2. OBSERVATIONS

Bottlenecks / Opportunities

- Some shortages can't be resolved as resources are at full capacity
- Capacity swaps between SKU are practiced as the production plan in the EPH is not optimized
- Current method of capacity swaps is slow and not systematic

Root Causes Analysis

- Quick reference for planner to determine which Family to refer to in the EPH Planner (below)
- The second graph displays resources (blue nodes) and products (yellow nodes) using Alteryx. Senior management can identify potential long term capacity constraints and adjust subcontracting strategies.

EPH Planner (H)

- User interface displaying the proposed number of units to decrease or increase for SKUs for each bucket
- A dynamic tool for planners to communicate their changes to other planners as well as to monitor effects of the change done
- Interactive dashboards created for resource management and planning showing penalty costs and utilization of resource(s)

• To reduce the time taken to make a decision and to optimize the capacity swaps between SKU

3. METHODOLOGY

- Create a visualization tool for resource families (SKUs sharing the same resources) to help planners to determine the family quickly
- Have a tool to process all required information and propose optimum capacity swaps
 - -Extract data from optimizer logs automatically using VBA -Formulate linear optimization model to minimize delay penalty cost and Backorders.
- Test the model with real data from the SAP optimizer to compare results

Optimization Model

Objective function: min $\Sigma\Sigma a_i \min \{0, I_{it} - SS_{it}\} + b_i^* \min \{0, I_{it}\}$

Constraints	Remarks	Variables	Definitions
$I_{imt} = I_{im(t-1)} + R_{imt} - D_{imt}$	Stock on hand at time t for	SS _{imt}	Safety stock at time t
	market m product i, for $t \ge 1$	l _{imt}	Stock on hand at time t for product I
$R_{imt} = P_{imt} + C_{imt}$	Total receipts = Planned receipts + Confirmed receipts	R _{imt}	Total receipts at time t for product I
		D _{imt}	Forecasted demand at time t for product I
λ time $\Sigma \frac{X_{ijmt}}{m_{ij}}$ = P _{imt} $\forall i \forall t$	Total planned receipts = Total units of production	P _{imt}	Total planned receipts at time t for product I
		C	Total confirmed receipts at time t for
		Cimt	product I
R _{imt} ≥C _{imt}	Total receipts are smaller than confirmed receipts	a _i	Below safety stock penalty cost for product I
		b _i	Delayed demand penalty cost for product I
Σxijmt ≤ Mjt ∀j ∀t	Total time used is limit to resource capacity	m _{ij}	Amount of resource j needed for product I
		M _{jt}	Resource capacity of resource j at time t
$SS_{imt} = \Sigma D_{imk}$	Aggregated demand	X _{jimt}	Unit of production for market m product i resource j at time t

• Lack of visibility in resource and product interdependencies

Future Directions

- This optimization model serves as a prototype, which can be further defined and developed by Dyson's software engineers.
- The tool could be integrated with the current SAP APO system to have a smoother workflow.
- Training should be conducted to embed this tool into the current replenishment process