

Group Members: Titus Ong | Felix Fernando | Kevin Christian | Ren Xiao Kai | Sheena Low | Shi Lei | Song Shuang | Zhang Xian NUS Supervisors: A/P Ng Kien Ming | A/P Ng Tsan Sheng, Adam Industrial Supervisor: Mr. Laurent Derien

PROJECT OVERVIEW: To set a systematic decision making tool to help supply planners identify worthwhile supply division within markets when considering replenishments in Dyson's Spares & Accessories (S&A)

1. BACKGROUND

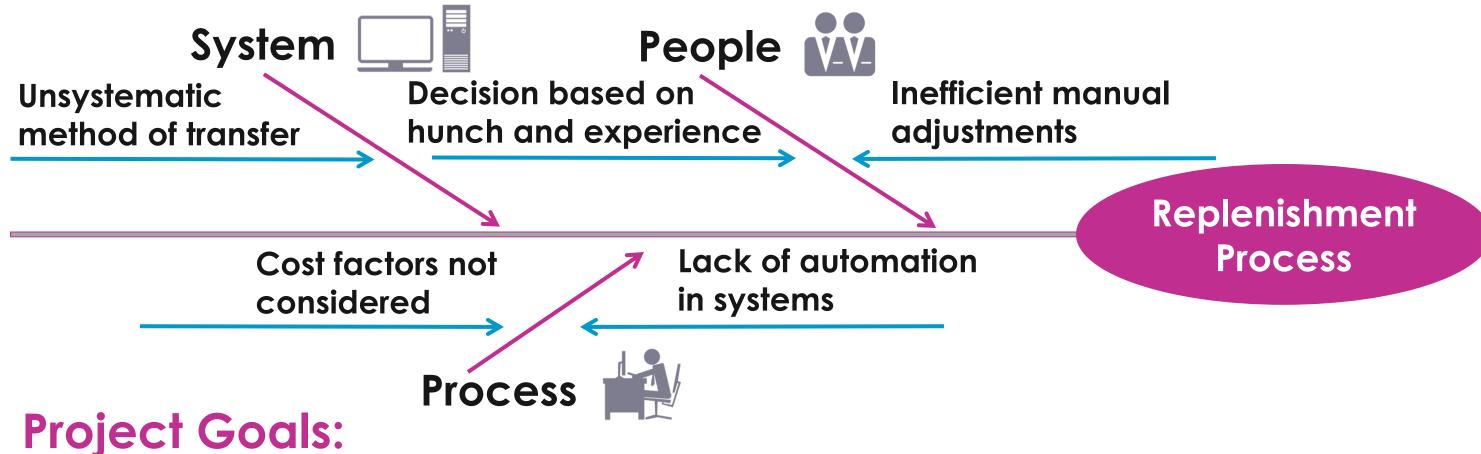
Dyson's supply chain network consists of Contract Manufacturers (CMs), distribution hubs and markets.

the shortages of S&As То fulfil during the replenishment process, Dyson sets up transfers within the

4. SOLUTIONS

Tool for Transfer Suggestions

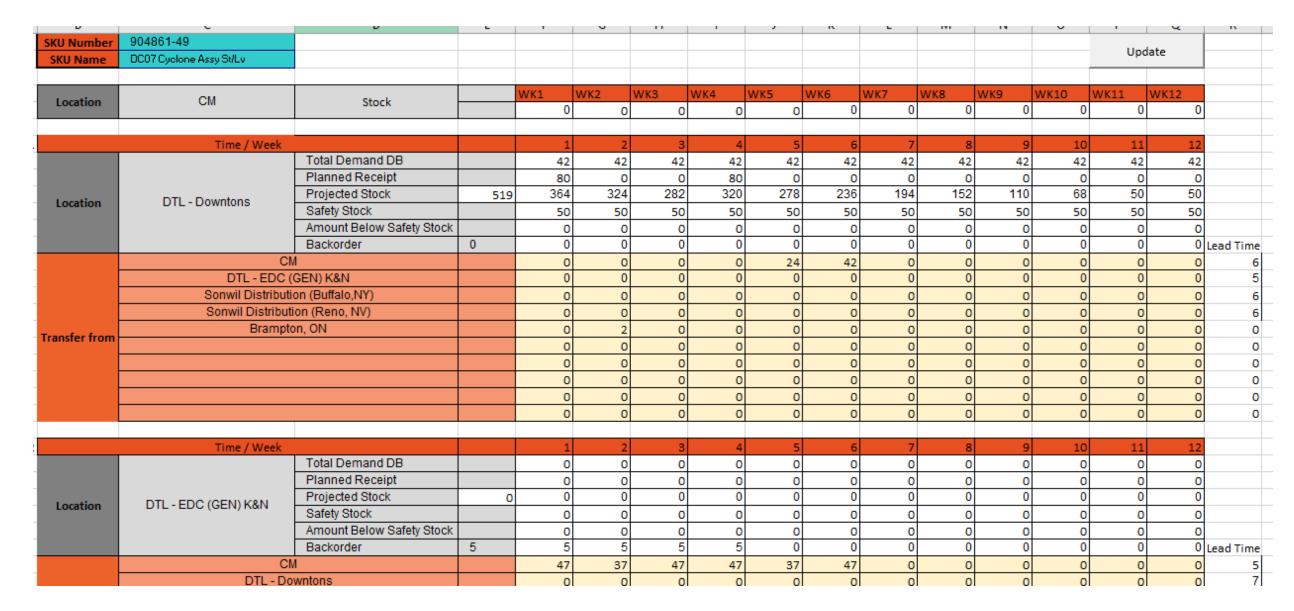
Re	ccomended Transfers				
SKU Number	From	То	Sent at (week)	Received at (week)	Quantity
903431-12	DTL - Downtons	Sonwil Distribution (Buffalo,NY) 1	. 2	23
903431-12	DTL - Downtons	Sonwil Distribution (Buffalo,NY) 4	5	15
903431-12	СМ	Sonwil Distribution (Reno, NV)	1	. 6	59
903431-12	DTL - Downtons	Sonwil Distribution (Buffalo,NY) 8	9	20
904861-49	DTL - Downtons	Sonwil Distribution (Buffalo,NY) 1	. 2	193
904861-49	Sonwil Distribution (Reno, NV)	Sonwil Distribution (Buffalo,NY) 1	. 3	23
904861-49	Brampton, ON	DTL - Downtons	2	5	2
904861-49	Brampton, ON	DTL - EDC (GEN) K&N	1	. 5	5
904861-49	СМ	DTL - EDC (GEN) K&N	1	. 6	47


• Decisions made between transfers ad-hoc currently and are unsystematic, which rely on planners' decisions

2. OBSERVATIONS

Bottlenecks / Opportunities

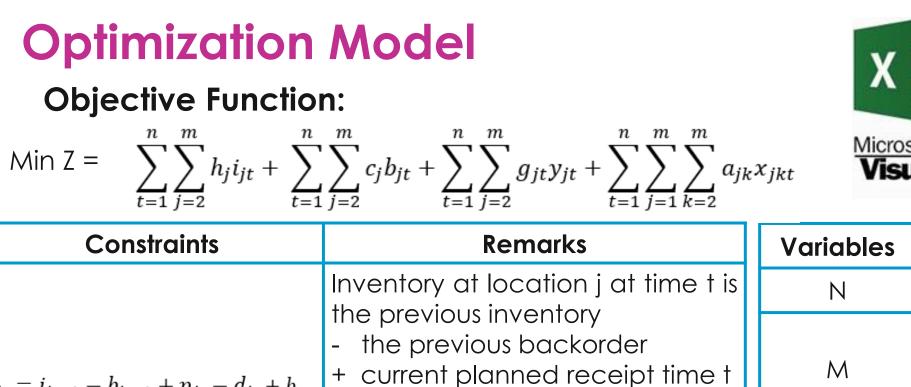
- During the replenishment process, planners mainly consider direct replenishments from the CMs. Dual sourcing is available in the APO but transfers are only considered when CM's are unable to fulfil.
- Supply planners manually check some markets for excess stock. From there the planner contacts the market to request.


Root Causes Analysis

904861-49	CM	Sonwil Distribution (Reno, NV)	1	6	4
904861-49	CM	DTL - EDC (GEN) K&N	2	7	37
904861-49	DTL - EDC (GEN) K&N	Sonwil Distribution (Buffalo,NY)	6	7	47
			_	_	

- A fast and systematic tool that extracts and optimizes the proposed allocation of stock based on the SKU selected.
- After solving, a user interface suggests to the planners the sources and destinations to transfer goods, the time it takes and the quantity.

Interactive Dashboard

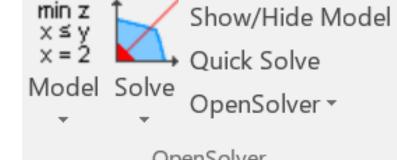


- Supply planners may update their recommended transfers and the effects on the markets will be dynamically reflected
- To codify the decisions of transfers between markets and reduce shortages by identifying more replenishment opportunities

3. METHODOLOGY

• Create a linear optimization model that seeks to minimize overall cost by recommending the best routes of transfers

• Extraction of data from stock projection reports using Excel VBA


current backorder

demand at location j at time t

 $i_{jt} = i_{jt-1} - b_{jt-1} + p_{jt} - d_{it} + b_{it}$

 $\sum_{k=1}^{m} x_{jkt} + \sum_{k=1}^{m} x_{kj(t-Tkj)}$

Definition

Number of nodes which has the SKU, whereby

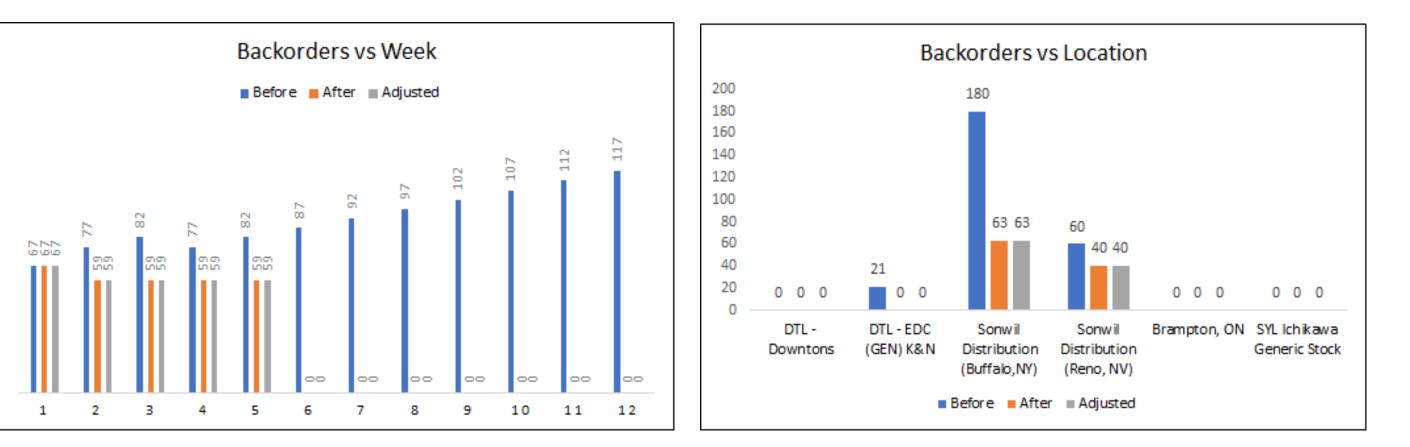
location 1 is the CM and location 2,3,4,...

Length of the planning horizon

would be the markets/hubs

Demand at location j in period t

Model	Solve	OpenSolver -	
*	*	opensolver	
OpenSolver			


5. EVALUATION

Value Added

Before

Manual and unsystematic decisions in transfers

- This dash board will also provide an overall comparison on the
 - Total level of backorders before and after changes
 - Level of weekly backorders for each SKU
 - Level of total backorder in each location

After

 Accountable and systematic decision in transfers between

-k-1 jkc $-k-1$ $kj(c + kj)$	- total transfers from location j to location k which was sent at time t + total transfer from location k to location j which was sent at time (t- lead time)	djt	Demand at location j in period t	
		hj	Holding cost per unit per period at location j	
		i _{jt}	Inventory at location j at the end of period t	
	Total sent away at time t from location j must be less or equal to inventory of location j at time t-1 + sum total received at time t from location k (k=1,2,3,, m) + planned receipt of location j at time t	T _{jk}	Lead time from location j to location k	
$\sum_{k=1}^{m} x_{jkt} \le i_{jt} + p_{jt} + \sum_{k=1}^{m} x_{kj(t-Tjk)}$		a _{jk}	The unit transport cost from location j to location k where j = 2,, m, k = 1,, m and j \neq k	
		b _{jt}	The amount of backorder at location j	
	Backorder of location j at time t must be ≤ to the sum of backorder of location j at time t- 1 and demand at location j at time t	p _{jt}	Planned receipt at location j at time t	
$b_{jt} \le b_{jt-1} + d_{jt}$		Cj	The cost of backorder at location j where	
		SSj†	The safety stock at location j where j at time t	
$y_{jt} \ge 0$	y _{jt} ≥0 The amount below safety stock must not be negative		The penalty below safety stock at location j	
$y_{jt} \ge SS_{jt} - i_{jt}$ The volume below safety stock at a location and time must be \ge the (safety stock – inventory)		X _{jkt}	The quantity of goods transferred from location j to location k at time t where j = 2,, m, k = 1,, m, t = 1,, n and $j\neq k$	
i _{jt} ≥0	Inventory must not be negative	y _{jt}	The volume below safety stock at location j at time t	
$d_{j\dagger} \ge 0$	Demand must not be negative			

between markets

Lack of visibility in market opportunities of replenishment

Future Directions

markets

- Greater visibility of opportunities in markets.
- **Up to 18** 5 markets markets • Decrease in backorders
- Obtaining the exact transport cost after transport lanes are being set up
- Providing management level insights to establishing new transport routes
- Integration of tool into the SAP-APO