

Department of Industrial and Systems Engineering **IE3100 System Design Project**

Lot Size Optimization

Team Members: CHEN Peijun CHONG Lionel FU Bo LIU Su **LUO Kang** XIA Lang

Supervisors: A/P CHAI Kah Hin; A/P TAN Kay Chuan

Company Supervisors: Mr. NG Patrick; Mr. TNG Long Khim

Problem Definition

Company Background

- Regional headquarter for backend manufacturing
- Focus on production efficiency improvements via lean manufacturing

Problem Definition

- Optimal lot sizing selection
- Optimal operation strategy for the mix of products

Wafer Fab Pre-Assembly Assembly **End of Line** Burn In/Test Mark Scan Pack **Product Ship**

Methodology

Define

Measure

Analyze

Improve

Control

Clarify problem & requirement

Analyze current process & refine scope

Factors for improvement of process

Find & Verify solutions

Ensure consistent improvement

OR Model

Real Situation

The backend production line is a multi-staged process which completed wafers come in from upstream plants. The following procedures are carried out:

- Incoming lots are prepared and arranged for the testing process.
- The lots undergo a series of tests with machines.
- Lots after the testing process undergo burn-in in the ovens.
- The lots are then brought through marking, scanning and packing.
- Dry Packaging to seal moisture out is done.
- Lot completed and preparation for shipment.

Math Model

Objective Function:

Minimize $Z = \sum_{j=1}^{M} Z_j$

Incoming lot size $\approx u$ **TIME LINE** Incoming lot inter-arrival $\approx 1/\lambda$ 1st lot leaves

1st lot arrives

Where $Z_i = T_{i-1} + \sum_{i=2}^{N} (T_{(i-1)i} - T_{j(i-1)}) + (D/X) * ST_j$ $T_{11} = (X/u) * (1/\lambda) + ST_1 + Y_1(X)$ ST_i : the set – up time for process j

> Y_i : the set – up time for process j T_{ii} : the time when the i^{th} lot leave process j

S.T. $X \leq oven\ capacity$

 $X \leq human operator capacity$ $CT \leq required minimum cycle time$

2nd lot arrives

Limitations of OR

- Only lot size for single product in dedicated production set-up is determined.
- The solution is not applicable for non-dedicated set-ups.
- Further exploration is needed with simulation.

Simulation Model

Model Overview

Model Formulation

Model Validation

Scenario Analysis

Single Product Scenario

Product PG-LQFP-176

Input Data

- The arrival quantity of this product follows N~ (1197.278, 250.99), arrival frequency has a mean of 32.5 per day
- The test period is set at 31 days

Tests

- 10 different tests with various test time per unit (J750, Test 1 – 0.013 mins/unit; YRPT Oven – 750 mins/batch)
- Machine MTTF and MTTR is considered in the simulation run

Assumptions

- The test line is running for 24 hours
- There is only one machine each for different tests (except for oven)
- There is no mix of different products

Multiple Products Scenario

- Non Dedicated Mode
- First come first serve for all products. Partial Dedicated Mode

High runner product has the priority to be processed first.

Fully Dedicated Mode

Dedicate machines to high runner product

Result Analysis

Analysis of Oven Variability 450000 400000 350000 300000 250000 200000 and son ton ton ton ton ton son ton ton

- Without consideration of oven variability
- Optimal lot size is 12000 units
- Is oven the bottleneck?

- variability
- Optimal lot size is 4000 units
- 1000 900 800 700 MSP Counts 400 1000 2000 3000 4000 5000 6000
 - **Lot Size Used**
- Regardless of variability in arrival quantity or change-lot durations, multiples of oven capacity tend to yield higher throughputs

Sensitivity - Impact of Arrival Quantity/Change-Lot Time (single product)

- In the base case, there is an optimal lot size for each product, which is a multiple of oven capacity and its threshold is determined by the arrival quantity and change-lot time
- II) A larger optimal lot size is expected with higher arrival quantity and longer change-lot time

Due to longer inter-arrival time, product 2's optimal lot size did not reach the threshold of change despite the increment in change-lot time

The optimal lot size increased as predicted when the change-lot time and arrival quantity are increased

The optimal lot size fell less than 2000 units despite the increment in the change-lot time due to low arrival quantity

Sensitivity - Impact of Change Setup Time (multiple products)

- When the change setup time increases by 10 times, fully dedicated mode has the highest throughputs
- When the change setup time reduces by half, non dedicated mode is the most preferred followed by the fully dedicated mode due to the high volume of product 1
- For fully dedicated mode, when setup time increases, the throughput for product 1 remains almost constant while throughputs for product 2 and 3 decrease
- For non dedicated mode, when setup time increases, the throughputs put for all products decreases

Sensitivity - Impact of Priority Product Quantity (multiple products)

- The performance of partial dedicated mode improved significantly when the arrival quantity of priority product (product 1) was reduced
- The optimal operation strategy is highly dependent on the change setup time, arrival quantity and arrival interval of the products

Recommendations

Present

Short-run

Long-run

- potential opportunity to standardize product lot size for operation for existing products
- Coordination with sub-con parties to request for a more standard and stable arrival pattern, to cater for the optimal lot size identified and to reduce WIP for each product
- For newly introduced products, a single product model can be used to search the optimal lot size. Then based on the product's arrival quantity and inter-arrival time, determined using multiple product model