

Streamlining of Hospital Pharmacy Supply Chain System

TEAM MEMBERS: SUN YANGGE, TAN WENJIE, XING YIFAN, YULI SAMANTHA SUPERVISORS: ASST/P WILLIAM B. HASKELL, ASST/P YE ZHISHENG COMPANY SUPERVISORS: A/P AYLIANA DHARMAWAN, ZHANG XIAOJIN, INDU SHARMA

Project Overview

The hospital pharmacy supply chain consists of 3 main players: suppliers, main store and sections. The pharmacy store holds inventory for more than 2000 items. These items are supplied to 140 distribution points including the various pharmacy sections, Omni-cells and patient care locations, like ward shelves and day surgery sections.

Problem Definition

- High ad-hoc and back order rates
- Space constraints in pharmacy main store and sections
- Manual and labour intensive processes

Objectives

- Reduce back order and ad-hoc rates at main store, subjected to current space constraints at all locations
- Automation of distribution amount calculations
 Ad-hoc order rate: no. of ad-hoc orders / total no. of item transactions
 Back order rate: no. of KIV orders / total no. of item transactions

Pharmacy Supply Chain

Methodology

Root Cause Analysis

Supply Chain Management

Simulation

Root Cause Analysis

Data Analysis

10%

of drugs

account for

50%

Of

 Identify drugs with the highest stock out and back order rates

Drug Demand

- Demand forecasting and fitting of distribution models using iPharm data
- Aggregate historical data to capture distribution of drugs to other locations
- **back orders** Identify fast moving, slow moving, erratic demand drugs

Supply Chain Management

- Usage of automatic ROP calculation in SAP
- ROP = Average consumption during lead time + safety stock
- Tuning of lead time parameters
 1. GR Processing Time
 - 2. Planned Delivery Time

	Distribution
Fast Mo	ving Drugs
Distri	bution calculatio

- $Q_d = \mu_c + SS I$
- Q_d : Distribution Quantity
- μ_c : 2 weeks mean consumption
- SS: Safety Stock
- I : Current Inventory

Drugs with Erratic Demand

Maintain min inventory level

Simulation

Results

SAP Lead Time Parameters Sensitivity

Future Improvements

- Capturing drug movement and demand at other locations
- Rules and guidelines for triggering ad-hoc orders