

Current

System

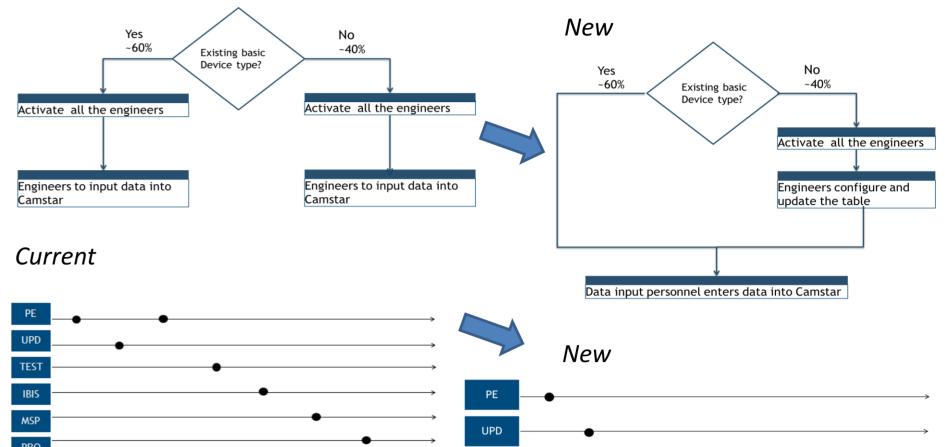
Optimal Data Maintenance Structure (Camstar) Study

IE3100R System Design Project

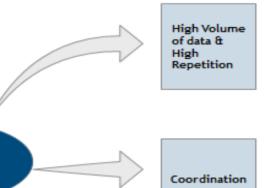
NUS Supervisors: Dr Bok SH, Dr Kim SJ, Dr Tan CH Infineon Supervisors: Team members: Arjun Arora, Du Yiding, Li Ji, Lin Zhemian, Mayank Srivastava, Zheng Qianren

For recent years, Infineon Technology is aiming to improve the manufacturing and testing operations globally. Camstar, the internal infrastructure software that monitors the testing progress, was implemented to its Singapore branch two years ago to kick off its paperless operations initiative. However, over the usage of the system in the past two years, the company has been experiencing inefficiencies.

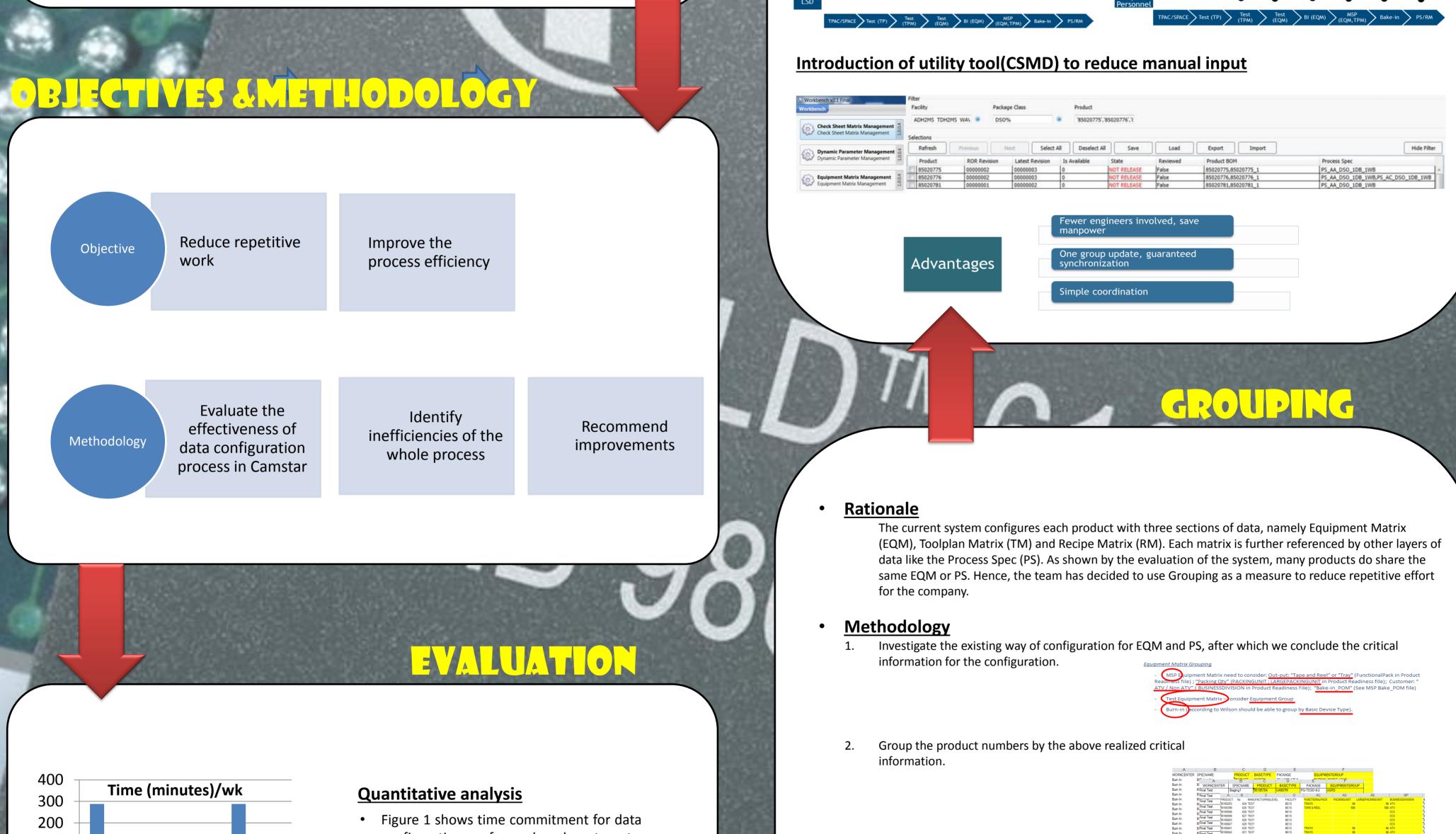
PROCESS FLOW REDESIGN

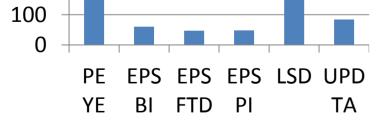

Existing Problems

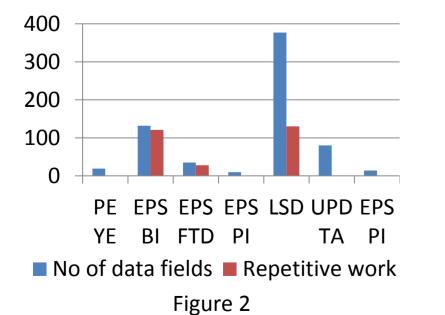
- Current process flow is inefficient
- A lack of a central authority to oversee the overall process of data configuration.


Objective

- Redesign the process flow to improve the system efficiency
- Simplify the process flow and reduce the number of engineers involved through reallocation of tasks.


Current




EXISTING CHALLENGES

- Large amount of repetitive work in data configuration
- 2. A big number of departments and engineers involved
- 3. Lack of coordination among engineers

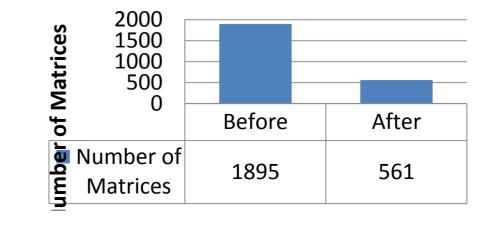
- configuration of each departments. Workload on data configuration is unevenly distributed among the six departments.
- Figure 2 shows the amount of repetitive work of each department weekly. At least three of the six departments have high percentage of repetitive work on data configuration.

Qualitative analysis

- Larger number of engineers involved in the configuration process
- High dependency among departments in the process

3. Figure out a naming convention for the new groups.

m In		-95166112	632 IEST	BEIS				uus
	B Final Test	95166413	633 TEST	BE1S	TUBES	25	750	ATV
m In	B Final Test	95166467	634 TEST	BE1S	TAPE & REEL	500	500	ATV
m In	B Final Test	95166500	635 TEST	BE1S	TRAYS	66	198	ATV
m In		95167127	636 TEST	BE1S	TAPE & REEL	800	800	00S
m la	Final Test	95167266	637 TEST	BE1S	TRAYS	84	84	005
	Final Test	95167497	638 TEST	BE1S	TRAYS	84	84	005
	Final Test	95167502	639 TEST	BE1S	TAPE & REEL	850	850	00S
	-	95167539	640 TEST	BE1S	TAPE & REEL	1000	1000	005
	Final Test	95167862	641 TEST	BE1S	TRAYS	84	84	005
	Final Test	95167920	642 TEST	BE1S	TRAYS	84	84	005
		95168862	643 TEST	BE1S	TAPE & REEL	850	850	005
		95168863	644 TEST	BE1S	TRAYS	84	84	00S
		95168919	645 TEST	BE1S	TAPE & REEL	850	850	005
		95168921	646 TEST	BE1S	TAPE & REEL	850	850	005


<u>Result</u>

٠

- 1. EQM yields very promising result after the grouping. A reduction of 70% of the effort is achieved. As the main part of the critical information for the grouping is their basic types, we have decided to use the basic type added with alphabets as their naming convention. (e.g. M1506A)
- 2. PS is not as promising as EQM, and we only targeted a portion of the product numbers. This is due to the limitations of the matrices. However, for the ones that we targeted, we still managed to reduce the effort by 60%.

Projected result of grouping

for EQM

