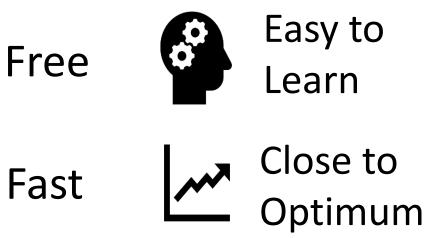
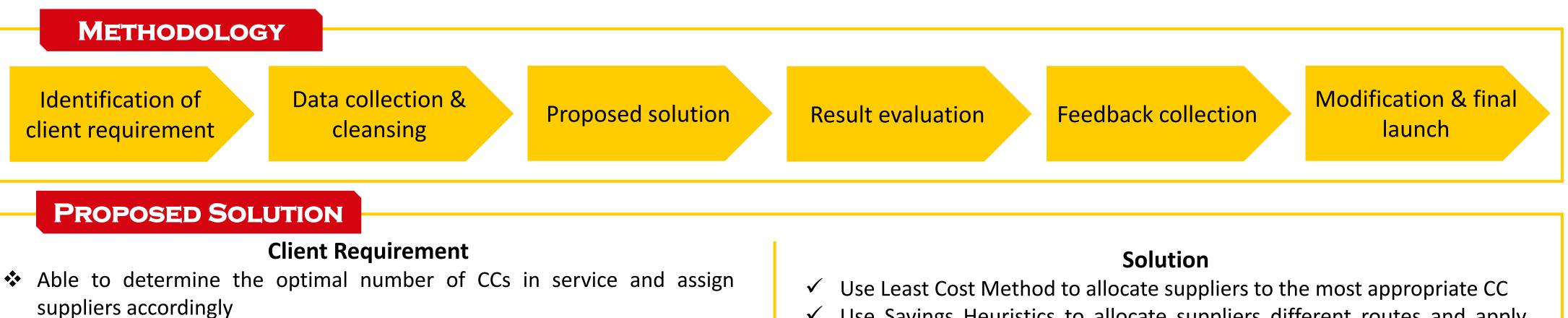


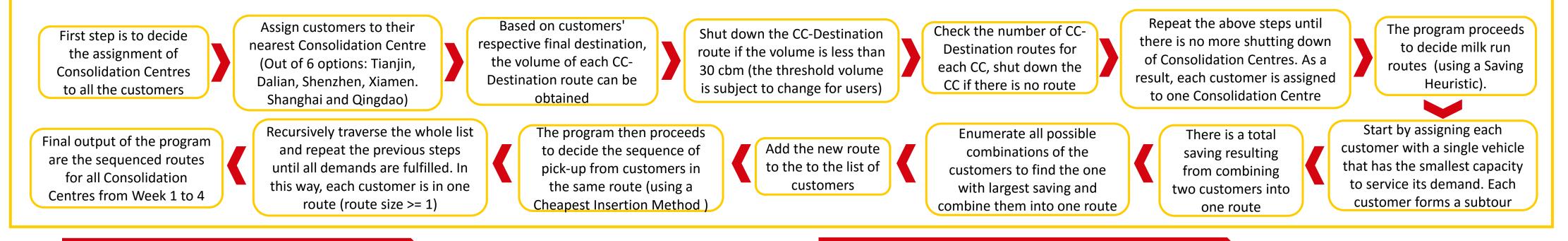
Designing and Operating Domestic Milk Run and Order Consolidation in China


Department of Industrial Systems Engineering and Management | IE3100R Systems Design Project

Team Member: Chan Shen Yee, Elaine Cai Lingyi, Gordy Adiprasetyo, Li Jiahao, Lin Shanshan, Yu Young Bin Department Supervisors: ASSOC/P Chew Ek Peng, ASST/P William Benjamin Haskell Industrial Supervisor: Dr. Lau Yew Loon


OVERVIEW

Project Description: This project aims to improve the logistical operational efficiency of DHL in China by developing a software. The company is required to collect products from small volume suppliers and send them to "Consolidation Centres" (CC) before they are shipped to overseas plants. There are currently about 180 suppliers and 4 CCs in China and about 12 plant locations. The number of CCs may subject to change based on the production and shipment volumes.



Our software will assist DHL to plan order consolidation and design milk run routes at a tactical (quarterly master routing) and operational (daily to weekly planning) level.

- Able to generate a near-optimal milk run routing according to customers' location, demand weight, shipment cost, etc.
- Use Savings Heuristics to allocate suppliers different routes and apply Cheapest Insertion Method to arrange their sequence in the route

MATHEMATICAL MODEL

In order to ensure the solution obtained is within an acceptable range, we compare our route generation results with an optimized solution computed by Cplex. We formulate the problem as a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). Mathematically, the problem is represented as:

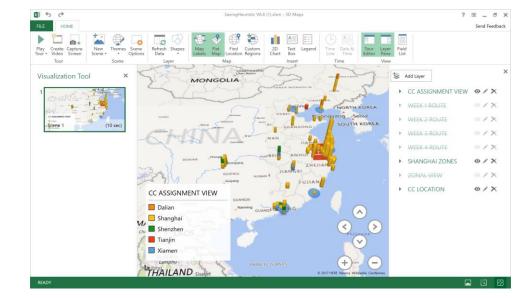
		$\min \sum_{k \in K} f_k \sum_{j \in N} x_{oj}^k + \sum_{k \in K} \sum_{i \in N} \sum_{j \in N} c_{ij}^k x_{ij}^k$		(1)
Let G	= (N, A) be a directed graph with the set A of directed arcs, and the set N of nodes	s.t.		
repres	senting a central depot and suppliers.	$\sum_{k \in K} \sum_{i \in N} x_{ij}^k = 1$	$\forall j \in N \setminus \{0\}$	(2)
Ν	Suppliers are indexed from 1 to n while the index 0 denotes the CC	$\sum_{k \in K} \sum_{i \in N} \sum_{j \in N} \sum_{i \in N} \sum_{i$		
d_i	known demand for Supplier $i, i \in N \setminus \{0\}$	$\sum_{i\in N} x_{ij}^k - \sum_{l\in N} x_{jl}^k = 0$	$\forall j \in N \setminus \{0\}, k \in K$	(3)
K	types of vehicles, with $K = \{1,, 7\}$ denoting the set of such types		$\forall k \in K$	(4)
Q_k	capacity of vehicle type K	$\sum_{j \in N} \sum_{i \in N} x_{ij}^k \leq N - 1$	VICI	(4)
f_k	fixed cost of vehicle of type $k \in K$		$\forall j \in N \setminus \{0\}$	(5)
le.	The cost of a vehicle of type $k \in K$ traversing arc $(i, j) \in A$	$\sum_{l\in N} y_{jl} - \sum_{i\in N} y_{ij} = d_j$		
c_{ij}^k	$\begin{cases} 50 & if \ i \in N \setminus \{0\}, \ j \in N \setminus \{0\}, \ i \neq j \\ 0 & if & i \in \{0\}, \ j \in \{0\}, \ i = j \end{cases}$	$y_{0j} \le \sum_{k \in K} Q_k x_{0j}^k$	$\forall j \in N \setminus \{0\}$	(6)
k	{1 if vehicle of type k visits from supplier i to j			
x_{ij}^k	l ₀ otherwise	$y_{ij} \le M \sum_{k \in K} x_{ij}^k$	$\forall \mathbf{i} \neq \mathbf{j} \in N \setminus \{0\}$	(7)
y_{ij}	flow of goods from <i>i</i> to <i>j</i>	$x_{ij}^k \in \{0, 1\}$	$\forall i \neq j \in N \setminus \{0\}, \forall k \in K$	(8)
		$y_{ij} \ge 0$	$\forall i \neq j \in N \setminus \{0\}$	(9)

PERFORMANCE EVALUATION

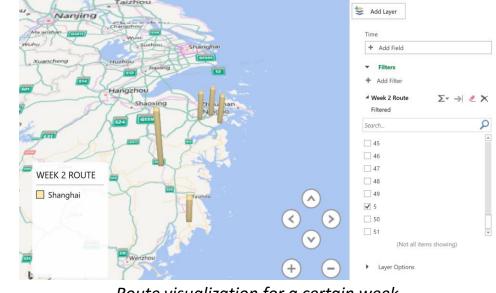
- Five sets of randomized sample models of 10, 15 and 20 suppliers with one CC were developed respectively and tested independently to measure the efficiency. Results are summarized in the table to the right.
- In general, the solution obtained from heuristics were close to the optimal solutions. The gap in total cost was less than 5 % up to 20 suppliers, which is within a reasonable range. The computational time was also significantly less the Cplex solution.

		10 Suppliers				
	CPLEX	Excel Tool	0	linet.		
	Cost Based	Savings Heuristics	Analysis			
Input	Computational time (s)	Computational time(s)	Gap in total cost in %	Reduction in time in %		
1	0.13	0.08	1.37%	38.46%		
2	0.65	0.1	3.22%	84.62%		
3	0.34	0.05	0.26%	85.29%		
4	0.68	0.09	3.63%	86.76%		
5	0.49	0.09	0.13%	81.63%		
Average	0.458	0.082	1.72%	75.35%		
		15 Suppliers				
	CPLEX	Excel Tool	n			
	Cost Based Savings Heuristics		Ana	lysis		
Input	Computational time (s)	Computational time(s)	Gap in total cost in %	Reduction in time in %		
1	40.73	0.12	4.74%	99.71%		
2	0.2	0.15	4.64%	25.00%		
3	0.68	0.16	5.29%	76.47%		
4	0.79	0.15	1.00%	81.01%		
5	7.31	0.16	0.79%	97.81%		
Average	9.942	0.148	3.29%	98.51%		
		20 Suppliers				
	CPLEX	Excel Tool		1.0		
	Cost Based	Savings Heuristics	Ana	IYSIS		
Input	Computational time (s)	Computational time(s)	Gap in total cost in %	Reduction in time in %		
1	991.18	0.22	5.60%	99.98%		
2	803.71	0.18	0.31%	99.98%		
3	524.93	0.17	5.83%	99.97%		
4	1167.04	0.19	1.15%	99.98%		
5	1298.31	0.22	4.89%	99.98%		
Average	957.034	0.196	3.56%	99.98%		

FINAL PRODUCT


Given the required specifications, we used Microsoft Excel to develop our software. We coded our proposed solution heuristics using VBA and developed the interface using macros.

S/N	SUBDITOT	Weight (ton)	Latitude 💽		Supplier City	Shipner Frequer	Destination 💌	Volu (cbn
1	Supplier 1	23	32, 175914	119, 497233	City A	Weekly	Plant 1	0.02
2	Supplier 2	23	32, 175914	119, 497233	City A	Fortnightly	Plant 2	0.03
3	Supplier 3	11	32, 175914	119, 497254	City A	Weekly	Plant 3	0,888
4	Supplier 4	15	32, 18095	119, 506395	City B	Monthly	Plant 4	0.0016
5	Supplier 5	30	23.044837	113, 770683	City C	Weekly	Plant 5	3, 48
6	Supplier 6	7	39, 908936	119, 548857	City D	Monthly	Plant 6	0.0125
7	Supplier 7	60	31, 488315	121, 142161	City E	Weekly	Plant 7	30, 52
8	Supplier 8	8	31, 488315	121.142161	City E	Fortnightly	Plant 5	1.11
9	Supplier 9	1.2	31, 488315	121, 142151	City E	Fortnightly	Plant 2	39.42


Our Excel software is also able to visualize CC route allocation for different suppliers. We use Excel PowerMap to generate this visualization. This map is also useful in ensuring the credibility of the solution

Before starting the program, users are required to prepare a list of information as shown.

generated by our software.

Suppliers colour coded based on CC allocation

Route visualization for a certain week

CC Assigned 🔽	Zone 🤝	Week of Delivery 🤝	FCL 🔽	Weekly Volume 🔻
Shanghai	1	1		0.016201982
Shanghai	1	2		0.01280125
Shanghai	1	1		0.888309639
Shanghai	1	4		0.000403099
Xianen	0	1		3. 484262222
Shanghai	12	4		0.0031125
FCL	0	1	PCL .	30, 51657316
Shanghai	9	2		0.555289778
FCL	0	2	ACL.	19, 70823556

α	Latitude (Longitude (Count	Total Volume	Plant 👻	Plant 2	Plant 👻	Plant 👻	Plant 👻	Plant 6 🔽
Shanghai	30, 922	121, 885	58	8. 487319752	6.352821	0.01280125	0.88831	0.324516	0.55529	0.0031
Dalian	38, 934	121.664	0	0	0	0	0	0	0	0
Tianjin	38, 975	117.741	1	0	0	0	0	0	0	0
Qingdao	36,064	120, 335	0	0	0	0	0	0	0	0
Shenzhen	22, 574	114, 271	3	0	0	0	0	0	0	0
Xianen	24, 441	118, 157	1	3. 484262222	0	0	0	0	3.484262	0
00	Latitude (* N)	Longitude (* E)	Count	OPEN/CLOSED	Plant 1	Plant 2	Plant 3	Plant 4	Plant 5	Plant (
Shanghai	30, 922	121, 885	58	1	1	1	1	1	1	1
Dalian	38, 934	121.664	0	1	0	0	0	0	1	0
Tianjin	38, 975	117.741	1	1	1	1	0	0	0	0
Qingdao	36,064	120, 335	0	1	0	0	0	0	0	0
Shenzhen	22, 574	114, 271	3	1	1	1	0	0	0	0
Xianen	24, 441	118, 157	1	1	1	0	0	0	1	0
				closed : 0						
Input Parameters										
Minimum volume per destination/CC (CBM)							1			

After clicking "Assign CC" button, the consolidation plan will be displayed. The program will indicate which CC the suppliers are assigned to and the total volume consolidated at each CC. Suppliers with Full Container Load (FCL) will be highlighted and excluded from the next stage of planning.

After clicking the "Get

program will generate

the final weekly milk run

routing for the planning

horizon of one month.

Result" button, the

	Consolidation Centre	Supplier 1	Supplier 2	Supplier 3	Supplier 4	Supplier 5	Supplier 6
Time		Day 1 8am-11am	Day 1 11am-1pm	Day 1 1pm-3pm	Day 1 3pm-5pm	Day 2 8am-11am	Day 2 11am-1pm
Route 1	Shanghai	Supplier AAA [City A]	Supplier BBB [City B]				
Route 2	Qingdao	Supplier CCC [City C]	Supplier DDD [City C]	Supplier EEE [City D]	Supplier FFF [City E]	Supplier GGG [City E]	Supplier HHH [City F]
Route 3	Xiamen	Supplier III [City X]	Supplier JJJ [City Y]	Supplier KKK [City Z]			
Route 4	Shenzhen	Supplier ABC [City M]					

*Data presented on this poster are fabricated for demonstration purpose only