

IE3100M SYSTEMS DESIGN PROJECT AY19/20 Department of Industrial Systems Engineering and Management

LOAD LINER OPTIMISATION

Members: Sutaveraya Suratanakavikul, Ho Jone In, Lim Soon Liang Joshua, Lye Yan Hern Department Supervisor: Professor Ng Kien Ming Industrial Supervisors: Mr Melvin Ang, Ms Lai Sok Kuan

PROBLEM

PIL's current cargo allocation process is manually calculated by their trade managers. It is time consuming, error prone and non-optimal which affects the company's profit.

OBJECTIVE

To create a program to recommend an optimal allocation for 20'/40' cargo containers to yield the highest contribution margin for a specific described shipping line.

METHODOLOG

Requirements Understand constraints and pain points faced by the trade managers

System Analysis Study the specifications and conceptualise suitable optimisation methods

Business Constrain

Design Formulate mathematical algorithm and test using Excel

Implementation Produce the actual code required for the model using Python

Testing Perform stress test and gather feedbacks for improvement

Integration Full integration of Python into PIL's system for all users

PROTOTYPE **STEP 1: STEP 2: STEP 3:** Decided to test on West Coast Formulated objective function and constraints Created a **prototype model** for testing Central and America 2 In WS2, the mathematical formulation is shown below. Maximise the objective function: Sum **Objective Function** Max. $\sum_{i=1}^{4} \sum_{j=1}^{|V|} \sum_{i=1}^{3} \sum_{j=1}^{3} C^{k}_{hij} X^{k}_{hij}$ of total contribution margin from each It is one of the **most** Physical Constraints: Constraints that user can input container in the optimum allocation. **Cargo Allocation**

complex	shipping	routes

It has one of the most port-pairs

It has **move count** and draft restriction as constraints

 $\sum\limits_{k=1}^{2} \sum\limits_{j=1}^{|V|} \sum\limits_{j=1}^{5} \sum\limits_{j=1}^{5} X^{k}_{hij} \ + \ 2 \ \sum\limits_{k=3}^{4} \sum\limits_{j=1}^{|V|} \sum\limits_{j=1}^{5} \sum\limits_{j=1}^{5} X^{k}_{hij} \ \leq \ U$

 $\sum_{k=1}^{4} \sum_{i=1}^{|V|} \sum_{j=1}^{5} \sum_{i=1}^{5} W^{k}_{hij} X^{k}_{hij} \leq Z$

 $l^{k}_{hij} \leq X^{k}_{hij} \leq U^{k}_{hij} \qquad \forall i \in L, j \in D, h \in V, k \in E$

 $\sum_{k=1}^{2} \sum_{j=1}^{|V|} \sum_{k=1}^{5} X_{hij}^{k} + 2 \sum_{k=2}^{4} \sum_{j=1}^{|V|} \sum_{k=1}^{5} X_{hij}^{k} \ge T_{j} \qquad \forall j \in D \ (2-9)$

 $\sum_{k=1}^{2} \sum_{j=1}^{|\mathcal{V}|} \sum_{j=1}^{5} X^{k}_{hij} + 2 \sum_{k=3}^{4} \sum_{j=1}^{|\mathcal{V}|} \sum_{j=1}^{5} X^{k}_{ij} \ge T_{i} \quad \forall i \in L$

 $\sum_{k=1}^{4} \sum_{j=1}^{|V|} \sum_{i=1}^{5} X_{hi4}^{k} \leq 311 Moves$

 $\sum_{k=1}^{4} \sum_{j=1}^{|\mathcal{V}|} \sum_{j=5}^{5} \sum_{j=5}^{5} W^{k}_{hij} X^{k}_{hij} \leq 5946 Tons$

 $X_{hii}^{k} \ge 0$ and integer

V Objective function subject to **physical** constraints such as draft restrictions, $\sum_{k=1}^{4} \sum_{j=1}^{|V|} \sum_{j=1}^{5} \sum_{j=4}^{5} W^{k}_{hij} X^{k}_{hij} \le 11224 \text{ Tons}$ weight limit and capacity limit.

> V Objective function subject to **business** constraints such as minimum and maximum no. of containers from certain ports.

STEP 4:

Compared results from model with historical allocation of WS2,

+\$110,348.50	\$736,448.25	16%
Increase in Profit	Profit from Model	Percentage of

MPLEMENTATION

Coding the Application

PuLP package is used to formulate and solve the integer program in Python. PuLP uses the Coin-or Branch and Cut (CBC) **solver**, which uses a branch-bound and cut method to solve IP problems.

The frontend interface, hosted on PIL's LMS platform, and the optimisation engine communicate via **JSON outputs**.

VVD KCRM 0056	E Service Lan	ws2 WEST CC	P	OL H	KHKG	*	Retrieve	Select C	ose		
Freight Revenue			Seq	Select		Routes					
			1	۲		CNJMN-(FDR)-HKHKG-(WS2)				Add Ti	ranshi
	M	xzlo	2	۲		CNSWA-(FDR)-HKHKG-(WS2)				EC	GYE
POL / POD	D2	D5	3	۲		CNCAN-(FDR)-HKHKG-(WS2)				D2	
ТЖКНН	1000	1000	4	۲		CNFAN-(FDR)-HKHKG-(WS2)				1000	
			5			CNCAN-(FDR)-HKHKG-(WS2)					
CNSHK	1000	1000	6			CNCAN-(FDR)-HKHKG-(WS2)				1000	
HKHKG	1000	1000	7			CNCAN-(FDR)-HKHKG-(WS2)				1000	
CNNGB	1000	1000	8			AUMEL-(SAS)-HKHKG-(WS2)				1000	
CNSHA	1000	1000	9			CNCAN-(FDR)-HKHKG-(WS2)				1000	
AUSYD (TWKHH)	0	0	4							0	
CNCKG (CNSHA)	0	0								0	
CNJMN (-CNSHK)	0	0					View	1 - 229 of 229		0	
CNSWA (CNSHK)	0	0								0	
MYPGU (SGSIN-CNSHK)	0	0							- 11	0	

 $\forall i \in L, j \in D, k \in E$

Designing User Interface

After evaluating requirements from end users, the team designed an interface that is simple and user friendly. It will automatically fill in key data of a chosen vessel and shipping route.

It also allows users to update important details and constraints if required.

				IS 1386.0	weight	5242.42					
	Errors										
POL / POD	мха	ZLO	M	KLZC	GTP	'RQ	PEC	u.	ECG	YE	
FOL 7 FOD	D2	D5	D2	D5	D2	D5	D2	D5	D2	D5	
ТШКНН	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	
CNSHK	37.0	0.0	0.0	0.0	158.0	0.0	0.0	0.0	182.0	0.0	
нкнкд	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	
CNNGB	213.0	0.0	0.0	0.0	0.0	0.0	528.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	200.0	0.0	0.0	0.0	0.0	0.0	
CNSHA				0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CNSHA AUSYD (TWKHH)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Final Integration

The team successfully created a model that gives the optimum allocation for different vessels and all shipping routes.

The application was **successfully integrated** into PIL's Liner Management System. All trade managers can use this application.

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable	Allowable Decrease
\$K\$3	TEU Limits Simulated	1293	316.532172	1293	82.1540102	65
\$K\$4	Weight Limits Simulated	14223	147.249815	14223	959.48	962.845
\$K\$5	Move Count Simulated	311	532.930282	311	13	40
\$K\$6	Draft PECLL Simulated	8017.08	0	11244	1E+30	3226.92
\$K\$7	Draft ECGYE Simulated	4667.61	0	5946	1E+30	1278.39
\$K\$8	Allocation for KHH Simulater	64	-549.424574	64	85.7444147	13
\$K\$9	Allocation for SHK Simulated	388	0	272	116	1E+30
\$K\$10	Allocation for HKG Simulater	0	-61.9233877	0	83.1798873	0
\$K\$11	Allocation for NGB Simulater	414	-738.842958	414	116	13
\$K\$12	Allocation for SHA Simulated	427	-872.321534	427	90	13
\$K\$13	Minimum for MX Simulated	232	-9.03272795	232	13	90
\$K\$14	Minimum for GT Simulated	349	-64.685063	349	13	90
\$K\$15	Minimum for PE Simulated	311	0	271	40	1E+30
\$K\$16	Minimum for EC Simulated	401	0	336	65	1E+30

Sensitivity Analysis

The team also **performed sensitivity analysis** to identify the effect of a small change in a constraint on the objective function.

Users will be able to **identify the impact** that a constraint has on the contribution margin using its shadow price.

- ACHIEVEMENTS & BENEFITS -

FUTURE DIRECTION

Employing Machine Learning to forecast demand and supply for portpair constraints.

- + Programming Coded program in Python language
- + Operation Research Applied Integer Linear

+ Process Improvement Automated complex calculation and reduced human error

+ Data Analysis & Visualisation Performed sensitivity analysis, Programming concepts Created interface to display results