# **FACILITY DRIFT DETECTION & PREDICTIVE MAINTENANCE**

DEPARTMENT OF INDUSTRIAL SYSTEMS ENGINEERING AND MANAGEMENT (ISEM) IE3100M SYSTEMS DESIGN PROJECT AY 2017/2018



SDP-Gp6 Team Members: Hioe Wesley, Leong Yi Tung, Wang Yiting, Wong Sheng Hao, Yu Yue Supervising Professor: Associate Professor Chen Nan Micron Supervisors: Mr Vincent Hong, Mr Chen Zhengfei, Mr Feng Shaoyu

Water level

## PROJECT **OVERVIEW**

icron

### **Problem Description**

To develop efficient and effective algorithms to closely monitor the sensor signals and flag out abnormalities observed or drift detected



Serious drifts can lead to machine failure which may cause

- Wafer scrap
- Significant losses



## **Project Background**

Each sensor may measure different conditions



Some possible indicators that may signal potential drifts are

- Unusual amplitude change
- 2. Sudden gradient change

Micron currently implements Preventive Maintenance

- Failures are warded off
- Perform unnecessary maintenances

### **Current Method by Micron**

## **Shewhart Control Chart**

Specific limits are set for each sensor Alarm is triggered when any point is out of the control limits

Drawbacks

- It is not sensitive enough to detect small shifts, which leads to delay in detection
- 2. It monitors individual sensors without the independently consideration correlations of between sensors

## **Key Objectives**

## **Drift Detection**

- Propose efficient statistical methods to detect drifts using multivariate variables with minimal delay
- Efficiently output the drifting sensors and drifting event time while keeping the false alarm level low



- To determine the effectiveness of the usage of the results given by drift detection for predictive maintenance
- Future exploration and extension from drift detection



algorithms prevent loss due to

Effective

machine failure



#### <u>Methodology</u>

From the results of the drift detection, machine breakdowns be can predicted when the number of drifts detected shows an increase trend, suggesting the dearadation of the machine system.

- No gradual increase in the number of drifts detected leading to the facility event as the breakdown was sudden.
- Not effective for predictive maintenance with regards to this particular facility event and the data sets given.

#### Correlation

- Able to identify the correlation between the sensors with time delay.
- Theoretically, sensors drifted earlier are able to suggest potential drift events of the highly cross-correlated sensors after a particular time delay duration.



**Recommendations** Achievements Results **RESULTS AND Data Characteristics ACHIEVEMENTS** MEWMA MEWMA MEWMA Gradient Approximately normally Change with U Micron distributed signals MEWMA PCA Method Gradient Gradient **Skillsets** Anomalous data exhibits gradual change in process mean Specific **Quality Engineering** Sensor Yes Yes Yes Yes No **Real-Time** High • Serially correlated signals dentificatior Gradient Control step of DMAIC process, using Statistical **Data Analysis** Compatibility Anomalous data shows abrupt Change methods: EWMA, Control Chart, Multi-variate Analysis Accounting change in value 100% Hit Rate and Anomaly detection for Yes Yes Yes Yes No Correlation for Failure **Data Analytics Different Objectives** Detection\*\* Timing 5.43am 5.41am 5.41am 5.41am 5.47am MEWMA Programming: Python, Matlab To achieve minimum detection— • Big data mining and processing, data imputation, time Nonof the non-attributable drifts \*\* 100% Hit rate based on Gradient series data monitoring and analyzing all test data given attributable Groundwork 2 19 16 5 Undisclosed drifts MEWMA • To achieve maximum hit rate **Project Management** for PdM **Cost Savings** detected and earliest detection timing U Gradient Problem Solving, Time Management, Process Redesign, Frame Work Development