

Improving Throughput of Taxi Maintenance & Repair Operations (MRO)

Team: Ang Jing Fang, Cai Yue, Chen Bingyou, Laura Gunarso, Abhishek Gupta

Supervisors: A/Prof Poh Kim Leng, Professor Tham Ming Poh | ST Kinetic Supervisor: Mr Heng Bak Yong

1. DEFINE

Singapore Technologies Kinetics (ST Kinetics) is the land systems and vehicle arm of Singapore Technologies Engineering Ltd, a public listed company in Singapore. In anticipation of an increase in taxi MRO services. This project aims to provide a quantitative tool to measure the current throughput as well as to make possible recommendations to increase the throughput with the help of Process Flow Mapping, Discrete-Event Simulation Model, and Time Series Analysis.

2. MEASURE

Operational details of current business model

- The workshop provides two kind of services, namely Preventive Maintenance (PM) and Corrective Maintenance (CM).
- PM services are divided into PM A, PM B and PM C, each consists of different scope of maintenance.
- Arrival of taxis for PM services are scheduled in advance, though taxi driver tardiness is often observed; Arrival of taxis for CM services are random as and when taxis breakdowns occur.
- Tire and air-conditioner services are also provided.
- There are 15 general repair bays, 1 dedicated air-conditioner repair bay, and 2 dedicated tire bays in operation.

Process Flow Mapping of Current Process

Data Collection

 Data collection are derived from company's database as well as on-ground time study

Database	On-ground time study
Arrival time of PM (A,B,C) and CM repairs	Service time of air-conditioner repairs and tire repairs
Service time of PM (A,B,C) and CM repairs	Frequency of air-conditioner and tire repairs
Collection time of PM (A,B,C) and CM repairs	

5. CONTROL

On maintaining the feasibility of proposed scheduling

- Incentives to encourage taxi drivers to come at their scheduled time slot
- Demand pattern especially for CM services does not change from the basis of the proposed model as the proposed PM scheduling is based on the CM arrival patterns
- No bottleneck on the air-conditioner, tire, and administrative service counters. Repair services are the most important factor in measuring the throughput

On Cost-Benefit of Possible Scenarios

- The study shows that an increase of 30% in throughput can only be achieved when proposed scheduling is implemented together with manpower and one more loading bay. This solution may come with high cost
- Proposed scheduling is estimated to incur the least incremental cost, followed by manpower allocation, and finally one more loading bay

3. ANALYSE

Definitions

- Throughput: average no. of taxi processed per day
 - Min (#taxis repaired, #taxis collected)
- Total Processing Time
 - Repair Time + Collection Time + Waiting Time
- No. of Taxis Repaired = C * U / T
 - C: Total working hours per week
 - U: Utilization of the working bays
 - T: Average repair time per taxi

Time Study of Current Process

Capacity Analysis of Current Process

Time Study of Current Process

Key observations:

- 1. CM arrival rates is relatively lower on Monday while they are similar for other days
- 2. PM arrival rates is relatively lower on Friday while they are similar for other days
- 3. A lower demand is observed from 8-9am and from 4pm-6pm for CM

Simulation Results

Baseline	Raw Data	Baseline (w/o tardiness)
34.55	36.75	35.79
3.24	3.89	4.88
11.82	11.97	11.97
23.52	22.92	21.82
73.12	75.53	74.45
	34.55 3.24 11.82 23.52	34.5536.753.243.8911.8211.9723.5222.92

Key observations:

- Validation against raw data shows that the simulation model gives similar number of repairs done per type
- 2) If all taxi drivers follow the scheduled PM timeslot (no tardiness), the number of taxis done generally increase but the increase is only at 1 taxis done per day as when more PM services are scheduled, number of CM done decreases as they are competing for the same resources

Key insights to increase throughput

- A more balanced scheduling where PM services are spread across timeslot when CM services are lower
- Incentives to get taxi drivers to come on-time based on their scheduled PM slots
- Reduction in time needed to service a taxi

4. IMPROVE

Proposed Scheduling

	Scheduling (w/o
Service Type	tardiness)
PM A	36.15
PM B	5.00
PM C	11.58
CM	24.33
Total	77.06

Key ideas: to spread PM loads across timeslot with lower CM arrivals

- Schedule more PM between 8am 9am and 4pm 6pm
- Schedule more PM on Monday and Friday
- Real time forecasting methods: Boxes Jenkins, Holt Winters methods
- Compared to the current business model, the number of taxis done increases by 4 taxis per day. Compared to current scheduling w/o tardiness, the number of taxis done increases by 3 taxis per day

Additions of Resources (in conjunction with the proposed scheduling)

Scenario 1: Maintain full capacity at night shift (15 mechanics)

	Scheduling +	
Service Type	Manpower	
PM A	45.39	
PM B	6.33	
PM C	14.21	
CM	23.70	
Total	89.64	

Scenario 2: Maintain full capacity at night shift (15 mechanics) + one more loading bay

	Proposed + Manpower +	
Service Type	1 more loading bay	
PM A	50.67	
PM B	6.33	
PM C	15.97	
CM	24.03	
Total	97.00	

Improvement in total throughput relative to Baseline

				Proposed scheduling +
	Baseline with no	Proposed scheduling	Proposed scheduling +	manpower + one more
Baseline	tardiness	with no tardiness	manpower	loading bay
0%	+1 82%	+5 39%	+22 59%	+32 66%

Reducing Repair Time

- Create a few tire supply points in the workshop, which is replenished regularly instead of using a centralized tire inventory place
- Create a tooling kit to keep the workspace tidy to increase workers' productivity

Reducing Collection Time

 Implement an automated messaging system which reminds taxi drivers to collect their vehicles 10-15 minutes before the estimated finish time