INVENTORY MODELING OF AN INFANT

MILK FORMULA MANUFACTURING PLANT

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

IE3100 SYSTEMS DESIGN PROJECT

PROJECT SUPERVISORS: Associate Prof. LEE Loo Hay & Assistant Prof. NG Tsan Sheng, Adam

GROUP MEMBERS: Gian-carlo Tan Pulma, Guo Qing, He Qi & Trinh Thai Duy

PROBLEM DESCRIPTION

Wyeth currently faces high RM inventory levels – on average 90% of warehouse space is utilized. Capacity will increase by 50% with the opening of a third dryer in 2009.

OBJECTIVES

1. Model current inventory ordering and holding practices

1 Order for

next quarter

- 2. Identify reasons for high inventory and propose solutions
- 3. Study Supplier Hub Inventory Program (SHIP)

PROCESS

KEY FINDINGS & RESULTS

UNDERSTAND CURRENT PRACTICE

Jan Feb Mar Apr May Jun Aug

2 Review order qty for next quarter

4 Second delivery for Apr cleared from QA

3 First delivery

for Apr cleared

from QA

Where: Q_n order quantity for month n MOH month-on-hand f_n forecast for month n

CURRENT RM ORDERING PROCESS TIMELINE

ORDER QTY DETERMINATION

FORMULA

container capacity

ending inventory level for month n

REASONS FOR HIGH INVENTORY

FLOW OF INFORMATION

IDENTIFY CHALLENGES

SOME CRITICAL REASONS

1. Forecast inaccuracy

- Large forecast error variance
- · Bias between planned and actual RM demand

2. Order quantity determination based on forecasts and MOH of 1.8

5 Contract Volume

in Dec order qty

requirement considered

- Does not account for the demand variability
- 3. Long lead time
- Implies utilizing more inaccurate forecasts

PROPOSE SOLUTIONS

2-PRONGED STRATEGY

- 1. Improve order quantity determination process
- Include FE std. dev. in order quantity determination
- · Reduce bias between RM planned demand and actual usage.

2. Introduce Vendor Managed Inventory (VMI)

- Involving supplier, buyer and a third party logistics provider.
- Study Wyeth's implementation of VMI: SHIP

PROPOSED ORDERING POLICIES

Order practices	CP	LP .	EP+	
Frequency	Quarterly	Quarterly	Monthly	
Quarterly order restriction	Yes	Yes	No	
Determination method	Equal month of supplies policy	Equal safety factor policy		
Order quantity determination formula	$Q_n = C * \left\lceil \frac{(MOH)f_{n+1} + f_n - I_{n-1}}{C} \right\rceil$	$Q_n = C * \left[\frac{(k\sigma_{FE} + \overline{x}_{FE}) + f_{n+1} + f_n - I_n}{C} \right]$		

SIMULATION RESULTS

EVALUATION

	Results of simulation (% Change)		% Change)		
Scenarios	Ave. 10th percentile	Ave. 50th percentile	Ave. 90th percentile	Evaluation	
CP base vs. CP -10% in σ_{FE}	1.20%	0.72%	0.25%	CP insensitive to variations in FE std. dev.	
CP base vs. CP -40MT in FE mean		-7.09%		CP responds to changes in the mean of FE	
CP -10% in σ_{FE} vs. EP -10% in σ_{FE}	-13.21%	-14.46%	-15.03%	EP performs better than CP	
CP base vs. EP base	-9.55%	-10.97%	-11.88%	- Di performs octter than er	
EP base vs. EP -10% in σ_{FE}		-3.22%		EP responds appropriately to the changes in	
EP base vs. EP +10% in σ_{FE}		4.01% FE std. dev. in both dir		FE std. dev. in both directions.	

PROPOSE RECOMMENDATIONS

RECOMMENDED POLICIES

	Opportunity	Risk	
EP/EP+	The prospect to lower inventory levels internally	Requires more frequent inventory monitoring by buyer	
SHIP	Reduces bull-whip effect	Greater dependence on supplier	

FUTURE STUDY

- 1. Review existing forecasting procedure to improve forecast accuracy
- 2. Investigate causes of constant overestimation in production schedules
- 3. Extend study to all macro raw materials