

# - e-Triage System for NUH Spine Patients

IE3100M Systems Design Project | Department of Industrial Systems Engineering and Management



Industrial Supervisor: A/Prof Gabriel Liu Academic Supervisor: Professor Li Haobin Group Members: Elisha Lee Jian Xin, Ho Kai Lun, Koh Jing Yuan, Tai Song Ning, Jaslyn

#### 1. Background

- The National University Hospital (NUH) is a major tertiary healthcare institution in Singapore
- The Department of Orthopaedics in particular, is concerned about the increasingly longer outpatient wait times and infrequent availability of specialist orthopaedic care in Singapore's healthcare system

#### 3. Objectives

- Online web interfaces for self-reporting of symptoms by patients
- Make appropriate classifications based on self-reported symptoms
- Triage according to priority and urgency of patients

Conduct trials to evaluate the accuracy and consistency of classifications

| 4. Front-end Methodology        | 5. Back-end Methodology 6. Performance Analysis |                        |                                                |  |
|---------------------------------|-------------------------------------------------|------------------------|------------------------------------------------|--|
| Web Interface Design Principles | Machine Learning                                | Feature Scoring System |                                                |  |
|                                 |                                                 | Methods:               | ✓ Best model: Tree with Random Forest          |  |
| Simple                          |                                                 | 1. Logistic            | pelvic_slope 0.033525<br>sacrum_angle 0.039103 |  |

## 2. Limitations of Current Development







Sensitivity – 90.48% which is comparable to the maximum of 92.85% Does not dismiss minor features too quickly

- Ranking Patients
  - ✓ Best model: Boosted Tree



#### ROC Score – 0.839

|           |                        | Actual Observation      |                     |       |
|-----------|------------------------|-------------------------|---------------------|-------|
|           |                        | Non-Null<br>(Abnormal)  | Null (Normal)       | Total |
| Predicted | Non-Null<br>(Abnormal) | 39                      | 5                   | 44    |
|           | Null (Normal)          | 3                       | 15                  | 18    |
|           | Total                  | 42                      | 20                  |       |
| Accuracy  | 87.10%                 | Sensitivity :<br>92.85% | Specificity:<br>75% |       |

#### Accuracy Rate – 87.09% Sensitivity – 92.85%

- ✓ Based on current Spine Template
  ✓ 2 Versions (Doctor and Patient)
- Patient Version Less comprehensive and uses layman terms
- Doctor Version Captures highly technical data only obtainable through patient examinations
- ✓ User Centric Design Textual, Visual & Audio Aid

2. Back-end

Flask Application Programming Interface (API)
 Collect, process and store data

2. Postgres SQL Database

- Secure storage of patient & medical records
- Easy access of data for data analytics

3. Scoring & Triaging

Utilize Machine Learning to score patients by urgency



## 9. Conclusion

ISE Skill-sets applied:





Project

Management



Optimization

Machine Learning

Skill-sets acquired:





Web

Development



Stakeholder Management

Human Factors Engineering