
Emergency medicine junior doctor rostering 
using constraint programming

Project description Results & discussion

Conclusion

As part of IE3100M Systems Design Project, under the Department of Industrial
Systems Engineering and Management and in collaboration with Singapore General
Hospital. The team comprises of Chua Sheng Lun, Benjamin, Kow Juan Hian, Ian, Ong
Kok Cong and Ong Wei Sheng who are under the supervision of academic supervisor
Professor Andrew Lim and workplace supervisor Dr Joy Quah.

The Singapore General Hospital (SGH) Emergency Department (ED) creates
their junior rosters manually, having to meet doctor’s shift requests, training
requirements as well as daily staffing requirement. This process is tedious
and extremely time consuming, taking the roster planner weeks to finalise
the next month’s roster.

The purpose of this project is thus to create an application that
automatically generates a roster based on given requirements. This roster
should have two views, namely a shift by day view or a doctor by day view.

DAY 1 DAY 2 DAY 3

SHIFT A Dr. A
Dr. D

Dr. C Dr. B

SHIFT B Dr. B Dr. A
Dr. D

Dr. C

SHIFT C Dr. C Dr. B Dr. A
Dr. D

DAY 1 DAY 2 DAY 3

Dr. A SHIFT A SHIFT B SHIFT C

Dr. B SHIFT B SHIFT C SHIFT A

Dr. C SHIFT C SHIFT A SHIFT B

Dr. D SHIFT A SHIFT B SHIFT C

Shift by day view Doctor by day view

We developed a web application with a simple User Interface (UI):

The model is then built, leveraging on the CP-SAT solver from Google OR-
Tools. Amongst other model variables, a Boolean shifts variable is created
which takes on the value 1 if doctor n is allocated shift s on day d and 0
otherwise:

𝑠ℎ𝑖𝑓𝑡𝑠 𝑛, 𝑑, 𝑠 = * 1, 𝑖𝑓 𝑠ℎ𝑖𝑓𝑡 𝑠 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑜𝑐𝑡𝑜𝑟 𝑛 𝑜𝑛 𝑑𝑎𝑦 𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This model is created to be highly flexible to changes in the excel file such
as addition of new doctors, changes in shift timings, etc. After which,
constraints like “each junior doctor works only one shift a day” are added to
the solver:

methodology

5
! ∈ #

𝑠ℎ𝑖𝑓𝑡𝑠 𝑛, 𝑑, 𝑠 = 1, ∀ 𝑛 ∈ 𝐽𝑢𝑛𝑖𝑜𝑟 𝑑𝑜𝑐𝑡𝑜𝑟𝑠 , 𝑑 ∈ 𝐷

Under constraint programming, a generated roster that satisfies the above
constraints are termed feasible rosters. But they may not be optimal. To
optimise the roster, several objectives are defined whose weights could be
altered using the excel file. Objectives include maximising sum of shift
requests met and sum of shift requirements met while minimising number
of senior and locum shifts allocated. An optimal roster is then generated
and downloads can be made via the UI.

Rosters generated from the model is compared with five manually created
rosters from different months:

Through this UI, which was built using the React.js framework, the user can
upload an excel file that contains the staffing requirements, shift requests
and doctor information amongst other requirements. This information
would be passed to the backend using Flask APIs and processed. Any errors
with the input file would be displayed on the UI:

As seen in the above figures, the rosters generated from the model
outperforms those manually created mostly on the criteria of meeting
doctors’ shift requests amongst the comparison measures. This could be
due to the ratio of the weights of the objectives described in the
methodologies section.

Notably, the model with equal weights generated rosters with a lower
number of shift requirements met as compared to those manually created.
However, this can be rectified by tuning the weights for this objective such
that more shift requirements would be met in rosters generated by this
model.

The biggest improvement in a roster generated by the model versus those
manually generated would be the time taken to create the roster. While the
model takes minutes to hours to generate a roster, those manually created
take up to two weeks. Furthermore, a time limit can be set for the model to
be ran such that although an optimal solution is not reached, a feasible one
with relatively good performance can be achieved.

User friendly

• Gentle learning curve
• Non-technical

Flexible

• Allows for multiple changes in the input
• Sustainable in the long term

Accurate & Efficient

• Good performance
• Generated in minutes

In conclusion, to improve the process of roster planning in SGH’s ED, we
developed a web application that is:


