JUS National University of Singapore

Tan Tock Seng

HOSPITAL

HOSPITAL TO COMMUNITY CARE MODEL

Group 18 Team Members: Berenice Teo Su Yun Eka Buyung Lienadi, Gabriel Kok Zi Yao, Ngo Chanh Anh Minh

NUS Supervisor: Professor Andrew Lim, Research Assistant **Professor Cao Zhiguang** Industry Supervisors: Adjunct Associate Professor Ayliana Dharmawan, Ms. Zhang Xiaojin, Mr. Heng Yong Sheng

IE3100M Systems Design Project | Department of Industrial Systems Engineering and Management | AY 2019/2020

Problem Overview

Growing ageing population will lead to an increase in demand for healthcare services that go beyond the **hospital**'s physical compound and into the **community**.

This project aims to help TTSH to improve their current Hospital to Community process by:

- Automate their data mapping process and providing the visualization of the mapped data
- Reduce the possibility of delayed or missed last-mile care delivery services

KEY DELIVERABLES

- Interactive Dashboard that automates the mapping processes and provides visualization of the data
- Propose an **optimal route** 0-0 0 in assigning each nurse conducting the last-mile care delivery to the residents
 - Propose a list of possible selfcollection medicine locker locations

KEY SKILLSETS

- Project management concepts are applied in the development life cycle of the Interactive Dashboard
- Software development skills for Dashboard Backend
- □ Human factor engineering for Dashboard User Interface
- Optimization skills in Nurse Scheduling Solution
- Modelling and Analytics skills for Medicine Locker Solution

Nurse Routing & Assignment

Modelled as Asymmetric Multi-vehicle

Optimal Medicine Locker Locations

Reduce the inconveniences and increase the accessibility of the medicine collection process

Methodology

Interactive Dashboard

- Routing Problem
- Solve using IBM ILOG CPLEX **Optimization Studio**

Parameters:

 $u_{ik} = 0 \ or \ 1$

- C Transportation cost (SGD/m)
- D_{ij} Transportation distance from location i to location j by car (m)
- P Outsourcing cost for one patient
- L Max no. of patients a nurse can provide care a day

• V_i - Number of nurses available at medical centre : $Min \ z = C \sum_{i \in N} \sum_{j \in N} \sum_{k \in K} D_{ij} x_{ijk} + \sum_{j \in J} P(1 - \sum_{i \in N} \sum_{k \in K} x_{ijk})$

Subject to: Sets: $\sum_{i \in N, \ i \neq j} \sum_{k \in K} x_{ijk} \le 1$ $\forall \ j \in J$ • I - Set of all health centers $\sum_{i \in N} \sum_{j \in J} x_{ijk} \le L$ $\forall \ k \in K, i \neq j$ • J - Set of all patients $\sum_{j \in N, \ j \neq i} x_{ijk} = \sum_{j \in N, \ j \neq i} x_{jik} \quad \forall \ i \in N, k \in K$ • $N = I \cup J$ $\sum_{i \in I} \sum_{j \in J} x_{ijk} \le 1$ $\forall \ k \in K$ • K - Set of all nurses $\sum_{j \in N} \sum_{k \in K} x_{ijk} \le V_i$ $\forall \ i \in I$ $u_{ik} + u_{jk} + Lx_{ijk} \le L - 1$ $\forall i, j \in J, k \in K, i \neq j$ $x_{ijk} = 0 \ or \ 1$ $\forall i, j \in N, k \in K$

 $\forall i \in J, k \in K$

I. K-means clustering algorithm to identify centroid location

Curve

II. Elbow method to determine optimal number of lockers per location

Results and Deliverables

Interactive Dashboard

Block Level Mapping

analytics

A map of central Singapore that shows any combination of diseases in each region

- Simple and intuitive User Interface
- Advanced visualization capabilities
- Toggle function
- Combine disease function

Optimal Nurse Routing & Assignment

Medical centre	Nurse ID	First patient ID	Second Patient ID	Third patient ID
TTSH	Nurse-1	Patient-2	Patient-4	Patient-3
TTSH	Nurse-2	Patient-6	Patient-15	Patient-10
Centre 1	Nurse-3	Patient-7	Patient-9	Patient-12
Centre 2	Nurse-4	Patient-8	Patient-1	Patient-5
Centre 2	Nurse-5	Patient-14	Patient-18	Patient-17

Example routing of 18 patients, 5 nurses

Optimal Medicine Locker Locations

Unit Level Mapping

Table shows patient's status summarized in selected address

- Automated data
 - consolidation process
- Easy visualization with multi-color scheme

from 3 different medical centres

Result:

- 1. 15 out of 18 patients directly served by TTSH and partners
- Remaining 3 outsourced 2.

Recommended Locations for Medicine lockers

Additional information:

- Corresponding building type
- ✤ Alternative address location in case output is inaccessible

Future Directions

✓ ✓

Graphical function for Dashboard

Mobile App Dashboard

Integrate Nurse Routing function into Utilize Human Factor Engineering to design **Medicine Collection** Lockers

Conclusion

Automated Data Mapping Process

✓ Reduces the repetitive task of mapping data ✓ Reduces the time taken of mapping data ✓ Reduces the error occurred in mapping data

Interactive Dashboard

 Creates interactive visualisation platform Allows easy identification of trends in each region \mathbf{V} ✓ Allows easy identification of unit-at-risk

Nurse Routing & Assignment ✓ Increases the efficiency of coordinating and delivering the last-mile care services

Medicine Lockers

✓ Increases the accessibility in the collection of medications at lockers at convenient locations