

Department of Industrial Systems Engineering and Management

COSMOS Intelligent Layout Planning Solution Development of Facilities Capex Optimization Module

AY 2021/2022 Systems Design Project (Group 12) Team Members:

Elle Lee Xin Yu | Rahul Gupta | Tan De Ming | Zhang Lizheng

Department Supervisor: A/P Chew Ek Peng

Industry Supervisor: Mr Michael Agung Pradhana

Problem Overview

Add a module in Micron's intelligent layout planning solution (COSMOS) to comprehend facilities' basebuild availability to determine the optimal placement of tools when they arrive in the fab. The **project scope** can be broken down into:

- 1. Liaising with the facilities team to create a data pipeline for facilities basebuild availability and tool utility requirements
- **Develop an optimisation algorithm** to minimise facilities 2. capital expenditure (CAPEX) or lead time by using utility cost functions and lead time to build laterals for utilities

Current Situation

- **X** Current database is **not easily** readable
- **X** No automated system to plan factory layout. Planning is currently manually by Micron done engineers

Time is spent inefficiently to interpret data and inconsistencies may arise due to human error

Key Objectives

✓ Create a data pipeline to transform data to be used in Python

✓ Develop an optimisation **model** that fits Micron's needs Enhance accuracy of layout planning

✓ Allow scalability of the proposed model

Key Skillsets

- ***** Systems Thinking
- ★ Operations Research
- ***** Linear Programming
- ★ Project Management
- ★ Python and Excel
- (data cleaning and
- creation of model)
- ***** Gurobi Optimiser

Methodology

Mixed Integer Programming

of variables

as

Greedy Heuristic Programming

This model acts as an **incumbent** to the MIP model. In a scenario, where the MIP model is not able to solve the

Data Pipelining

Before building the optimisation algorithm, extensive preliminary work was done. It involved data cleaning

MIP

problems consists constrained

Branch-and-Bound

rigorous data transformations. From these and datasets, the available number of utilities at each location and required utilities for each tool are found. The cost of each utility is assumed to be constant.

		1
Name of Column	lame of Column Details	
Name of Utility	Type of Utility	optimis
Lateral/VMB	Fab location - Level - Gridline - Service - Type of EQ - Index	used fo
LPOC	Fab location - Level - Gridline - Service - Type of EQ - Index - Connection Index	model.
VMP	Lateral of Utility used to link the Utility to Tool	
MiCap	Index of Tool	
Workstation	Type of Tool	
LID	Location ID (address of a tool)	

integers as well as some acting as non-integers. MIP problems are solved using the branch methods of and bound

enumeration. **MIP Model Formulation** Gurobi Sets I = Total number of ToolsI = Total number of Locationsimiser is K = Total number of Utilities Parameters r_{ik} = Required units of Utility k for Tool i d for this a_{ik} = Available units of Utility k at Location j $c_k = \text{Cost of 1 unit of } Utility k$ **Decision Variables** if Tool i is assigned to Location j $x_{ij} = \begin{cases} 1, \\ 0, \end{cases}$ otherwise **Objective Function** $\min Z = \sum_{i} \sum_{j} \left(x_{ij} \times c_k \sum_{k} \max\left\{ (r_{ik} - a_{jk}), 0 \right\} \right)$ Constraints $\sum x_{ij} = 1 \quad \forall i = 1, \dots$ (1) $\sum x_{ij} \leq 1 \quad \forall j = 1, \dots$ (2)

Comparison of Design

problem for an optimal solution, greedy heuristic algorithm helps to find the most feasible solution.

Mixed Integer Programming

- ✓ Able to allocate all tools in fab simultaneously
- Able to find the most optimal solution
- Not able to update preset available utilities after each allocation of tool
- Might run into memory error if problem is being scaled up X

Greedy Heuristic Programming

✓ Able to replicate real-life decision making process through sequential allocation of tools

- Able to update preset available utilities after each allocation of tool
- Not able to find the most optimal solution X
- Might result in longer run time when scaled up X

		Resu	llts				Recommendations	
Mixed Integer Programming		Greedy Heuristic Programming			• If the information on all tools (including future tools)			
Tools Allocation		Tools Allocation		Individual Cost of Allocation		entering the fab are available, then the MIP model should be chosen.		
Tool Name	Allocated Location in the Fab	Tool Name	Allocated Location in the Fab	Tool Name	Location	Cost	• If the number of tools incoming exceed the number of	
Tool A1	F24E	Tool A1	F04D	Tool A1	F04D	65	available locations and sequential allocation is needed the	

Μ

Total Cost	2195
Tool C2	F24F
Tool C1	F20D
Tool B2	F32E
Tool B1	F04H
Tool A2	F20F

otal Cost	2245	Location F04D						
			* Tools A1 and B2 are in					
Tool C2	F06J		Tool C2	F06J	50			
Tool C1	F02S		Tool C1	F02S	50			
Tool B2	F04D		Tool B2	F04D	70			
Tool B1	F18D		Tool B1	F18D	70			
Tool A2	F02N		Tool A2	F02N	70			
Tool A1	F04D		Tool A1	F04D	65			

⁶⁵ available locations, and sequential allocation is needed, the greedy heuristics model should be chosen.

> • Depending on Micron's needs, they can choose to minimise either cost or lead time.

Conclusion

Created two separate models (minimise cost or lead time) for Micron to automate their tool allocation as part of COSMOS

Reduced time spent in layout planning from as high as 72 hours to less than an hour, depending on the size of the batch of incoming tools

- ✓ Removed obstacles of human error and inconsistent allocations
- Proposed models can be scaled up to be used in all of Micron's fabrications

Future Steps

• Create an **updated cost function** that can account for the actual utility cost and lateral building cost. These costs are subject to global supplies of chemicals for utilities and materials for laterals. This allows the model to **mimic the real-life** context more accurately.

• Sharing of utilities across different locations. This can occur when a particular location has insufficient utilities for the tool placed there. This allows for more combinations and introduces a trade-off between the cost of utilities and cost of building laterals.