Resource Planning and Workload Forecasting Model for Warehousing Operations

Alexander Runako Chandra | Benny Winata Hartanto | Ling Xian Xun Kenjun | Tan Yu Ting Applelyn
Department Supervisor: Professor Poh Kim Leng | Project Supervisor: Rebecca Ng

PROBLEM OBJECTIVE

To deliver a optimization resource planning and workload forecasting model to help improve making resource staffing level decisions of the operations team.

MODEL CRITERIA

Model built should account for:

1. Dynamic inbound workload considering variability in lead times
2. Dynamic outbound workload with fixed date-lines to achieve on-time delivery targets

MODEL GOAL

\rightarrow To aid operation managers in optimizing resource allocation of inbounding process, to achieve a target level of productivity
\rightarrow To optimize manpower allocation within a warehouse in 2 hour intervals, and provide 12 weeks forecast of allocation to achieve its target level

ASSUMPTIONS

- Total manpower available, capacity of workstations and process route of each product type are fixed.
- Maximum queue length at all workstations is infinite.
- Shift configuration and working days are not considered.
- Workers are assumed to be homogenous, both in terms of skills and experience level.
- Time taken for workstation to clear jobs before arrival of new jobs is greater than 2 hours.
- Output for each iteration is fairly accurate $\&$ is used as input for subsequent iterations.

MODEL INPUT

\rightarrow Weeks to forecast (default:12 weeks)
\rightarrow Maximum manpower available for each shift
\rightarrow Workstation capacity for different processes (ID, PKG and PA)
\rightarrow Weightage to Manpower \& Productivity
\rightarrow Arrivals \& Backlog of each workstation (derived from Cummins historical data)

MODEL OUTPUT

\rightarrow Excel CSV file detailing daily allocation for stated weeks to each workstation
\rightarrow Excel CSV file detailing weekly allocation of manpower required for the stated weeks

MODEL FORMULATION

DATA CLEANING

- Our model seeks to provide an efficient manpower allocation over 5 working days per week disregarding overtime hours - non-working days scheduled arrivals to the next nearest working day
- Multilayer Perceptron (MLP) was used to predict missing values of data input files

OBJECTIVE FUNCTIONS

MAXIMIZE operational productivity level \& MINIMIZE required workers allocated

Objective function set minimises sum of deviations of the goals wrt. their respective weights
CONSTRAINTS
Total manpower allocated per interval \leq Maximum manpower available: $\quad M_{i} \leq M \max _{i}, \forall i \in I$ Sum of manpower allocated to each workstation in an interval \leq Total manpower allocated per interval:

$$
\sum_{j \in J} x_{i j}=M_{i}, \forall i \in I, \forall j \in J
$$

Equal amount of total available manpower for every interval in a shift:

$$
M_{i}=M_{i+1}=M_{i+2}=M_{i+3^{\prime}} \text { for } i=4 n-3, \forall n \in N=\{1 \leq n \leq 120\}
$$

Equal amount of total available manpower for every shift in a week:

$$
\begin{aligned}
& M_{i}=M_{i+8}=M_{i+16}=M_{i+24}=M_{i+32^{\prime}} \text { for } i=40 n-39, \forall n \in N=\{1 \leq n \leq 12\} \\
& M_{i}=M_{i+8}=M_{i+16}=M_{i+24}=M_{i+32^{\prime}} \text { for } i=40 n-35, \forall n \in N=\{1 \leq n \leq 12\}
\end{aligned}
$$

Allocated manpower \leq workstation capacity constraint: $\quad x_{i j} \leq L_{i j}, \forall i \in I, \forall j \in J$
Alpha as the ratio of completed units over the combined arrival and backlog:

$$
\begin{aligned}
& \sum_{i}^{i+3} x_{i j} \mu_{j} \geq \alpha_{i j}\left(\left[\sum_{i}^{i+3} A_{i j}\right]+B_{0 j}\right), \text { for } i=1, \forall j \in J \\
& \sum_{i=n}^{n+3} x_{i j} \mu_{j} \geq \alpha_{i j}\left(\left[\sum_{i}^{i+3} A_{i j}\right]+B_{i-1 j}\right), \text { for } i=4 n-3, \forall n \in N=\{2 \leq n \leq 120\}, \forall j \in J
\end{aligned}
$$

Flow control constraint:

$$
\begin{aligned}
& x_{i j} \mu_{i j} \leq A_{i j}+B_{0 j^{\prime}} i=1, \forall j \in J \\
& x_{i j} \mu_{i j} \leq A_{i j}+B_{i-1 j^{\prime}} i \neq 1 \& \& \in I, \forall j \in J
\end{aligned}
$$

Backlog carry forward constraint:

$$
\begin{aligned}
& B_{i j}=A_{i j}+B_{0 j}=x_{i j} \mu_{j}, i=1, \forall j \in J \\
& B_{i j}=A_{i j}+B_{i-1 j}=x_{i j} \mu_{j}, i \neq 1 \text { and } \in I, \forall j \in J
\end{aligned}
$$

Goal Programming adopted to balance the two objectives

RECOMMENDATION
\rightarrow Utilise stronger and more robust solvers to resolve the limitations of our current model. (e.g. Gurobi, CPLEX)
\rightarrow Implement a user-friendly interface.
\rightarrow Incorporate temporary workforce and instances of overtime to reflect real life operations.
\rightarrow Enlarge the scope to include outbound and different packaging processes (Auto-bag, Hand pack, Heavy pack 1, Heavy pack 2)

CONCLUSION

\rightarrow Successfully balances between minimising manpower and maximising items' completion rate to return a feasible output.
\rightarrow Successfully forecasts the potential manpower allocation that is required of Cummins based on past data.
\rightarrow Allocates efficient manpower to reach similar completion rate despite its limitations.
\rightarrow Further refinements and overcoming its limitations will certainly bolster the performance of the model.

KEY TECHNICAL SKILLS ACQUIRED

Systems Thinking \& Problem Solving
Machine Learning

