DEVELOPING A DEC PPORT FRAMEWO LYSIS OF RESOURCE LISATION FCTIVENES RDIAC AR IN SINGAPORE BACKGOUND

Department of Industrial Systems Engineering and Management (ISEM) IE3100R Systems Design Project | Group 7 - SingHealth 1 Group Members: Ying Fangfei Anna, Chen Xinjing, Low Eeron, Mohamed Amirul Bin Mohamed Amidun **SDP Supervisor:** Professor Tang Loon Ching SingHealth Supervisor: Dr Sean Lam Shao Wei

Defining Tomorrow's Medicine

Established in 2000, Singapore Health Services, also known as SingHealth, is an academic medical hub integrating clinical care, education and research to innovate and improve healthcare quality.

Missions: Care to Heal, Educate to Empower and Innovate to Advance

This project focuses on Cardiac Arrest Centres (CACs) in Singapore.

PROBLEM DESCRIPTION

In Singapore, the annual number of sudden cardiac arrest (CA) cases is **on the rise**, with 3432 cases reported in 2020. To address this, Singapore has established three Cardiac Arrest Centres (CACs) that offer comprehensive treatment for OHCA patients. However, it is important to also consider resource utilisation, including transportation of OHCA individuals, alongside specialized treatment to effectively address patient outcomes.

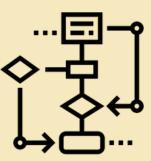
PROBLEM OBJECTIVE

To analyse the effectiveness of Singapore's CACs in treating OHCA patients and resource utilisation by developing a **Decision Support Framework**.

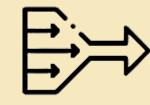
This helps healthcare management make informed decisions on the transportation of OHCA individuals to improve clinical outcomes, particularly survival rates.

PROBLEM IMPACTS

Mismatch of supply and demand due to the limited number of CACs.

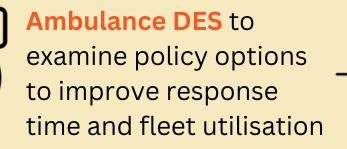


Delayed recovery of OHCA individuals due to inadequate and delayed care.



Loss of life or unfavourable clinical outcomes due to allocation errors, transportation delays and reduced survival probabilities.

METHODOLOGY



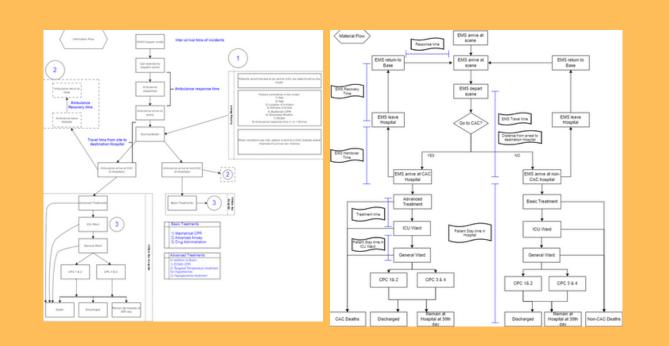
Information and Material Flow diagrams to provide an overview of the movement of patients and ambulances

Scoring Model simplifies decisionmaking process of diversion to CACs

Hospital DES to model EMS conveyance to hospitals and limited ICU ward capacity

CAC VS NON-CAC

CACs: SGH, NUH and TTSH

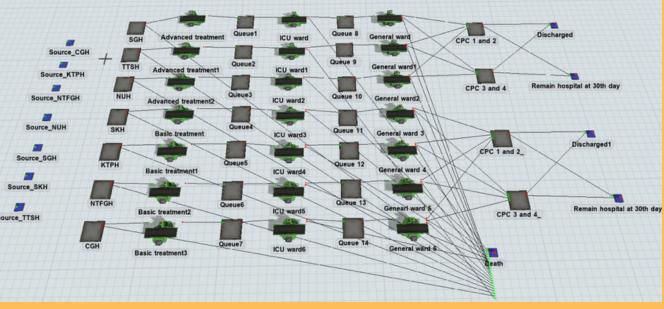

Treatments: Emergency Percutaneous Coronary Intervention (PCI), Emergency Coronary Artery Bypass surgery (CABG), Hypothermia Therapy and Extracorporeal Membrane Oxygenation (ECMO)

Non-CACs: SKH, KTPH, NTFGH and CGH

Treatments: Mechanical CPR, Advanced Airway and Drug Administration

INFORMATION AND MATERIAL FLOW DIAGRAM

Overview of movement of OHCA individuals from scene of the arrest to hospital, including the steps for transport decisions.


SCORING MODEL

Provides guidance and simplify decision-making process on whether an OHCA patient should be diverted to a CAC.

Base Scoring Model				Further Suggestions					
1.	Gender	Male/Female		⊢	Respiratory Rate,	<12/12-23/24-35/≥36			
2.	Age	<31/31-64/≥65		9.	breaths/min				
3.	Location of Arrest	Home/ In Pub Healthcare Facil		10.	Systolic Blood Pressure, mm Hg	≤90/90-140/141- 180/>180			
	Witness of Arrest			11.	Heart Rate, beats/min	≤60/61-99/100-119/≥120			
4.		Yes/No	_	12.	Pulse Oximetry, %	≥93/88-92/80-87/<80			
5.	Bystander CPR	Yes/No		13.	Glasgow Coma Scale Score	15/12-14/8-11/<8			
6.	Shockable Rhythm	Yes/No		⊢	Scale Score	Hypertension, Diabetes,			
7.	Prehospital ROSC	Yes/No		14.	Aetiology/Other Illness	Chronic Lung Disease, Cancer, Congestive Heart Failure			
8.	EMS Response Time	<8 mins / >8 min	IS	15.	Race	Chinese/ Eurasian/ Indian/ Malay/ Others			
AMBULANCE DES Data Required for Ambulance DES									
	mulates the		1.	Time call received by dispatch centre					
operations and processes of an ambulance service, improving ambulance			2.	Tir	me ambulance dispato	ched			
			3.	Tir	Fime ambulance arrived at scene				
			4.	Tir	Time ambulance left scene				
			5.	Tir	Time ambulance arrived at the hospital				
			6.	_	Time ambulance left hospital				
clinical outcomes. 7.				Time ambulance returned to base location					

HOSPITAL DES

Enables scenario analysis to investigate interactions between components → Improve overall clinical outcomes of OHCA patients (FlexSim Model)

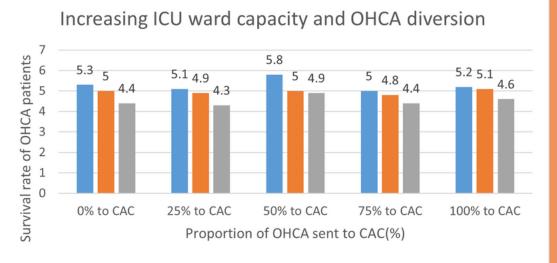
DATA COLLECTION

Data from the Pan-Asian Resuscitation Outcomes Study (PAROS) is used. The final dataset included 15171 records starting from 1 January 2015 of non-trauma OHCA cases in Singapore of individuals aged 18 years and above.

Age: Mean 69.5 years; Gender: 63.3% Male; Race: 68.9% Chinese Bystander CPR = 'Yes': **59.9%**; Witness of Arrest = 'Yes': **56.3%** Shockable Rhythm = 'Yes': 15.3%; Prehospital ROSC = 'Yes': 12.1% Location of Arrest: 70.2% Home, 12.7% Public Places EMS Response Time < 8 mins: 70.7% Ambulance Conveyance Time < 9 mins: 69.7%

> % of OHCA Patients to CACs: 38.7% Survived = 'Yes': 4.80%

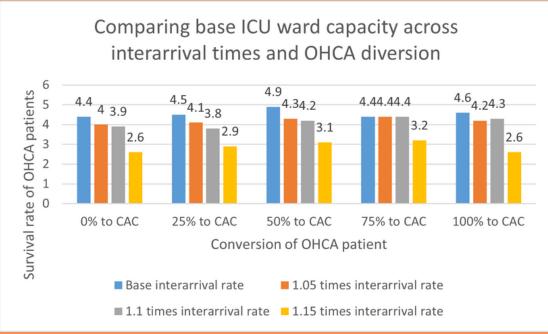
SCENARIO ANALYSIS


Scenario analysis was done to evaluate survival rates of OHCA patients (%) when parameters in Hospital DES are changed. Scenarios 1 and 2: 3 CAC hospitals, 4 Non-CAC hospitals

Scenario 1: Change in ICU Ward Capacity and Diversion Rates to CACs

Percentage of Patients Diverted to CAC (%)	25	50	75	100

RESULTS


The following visualizations illustrate the results of scenario analysis regarding the increase in the number of ICU beds and additional CACs in Singapore.

■ 2 more ICU beds ■ 1 more ICU bed ■ Base ICU beds

Increasing ICU ward capacity for OHCA patients is positively associated with in-hospital survival rates. The best results would be 2 more ICU beds when 50% of OHCA patients are diverted to CACs.

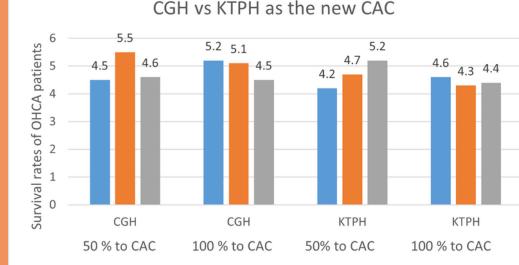
Scenario analysis on increasing OHCA arrival rates:

Increasing OHCA arrival rates decreases survival rate across the diversion of OHCA patients to CACs.

If Singapore would increase number of CACs by 1,

OHCA SOURCE LOCATIONS

Seven OHCA source locations, grouped by their actualized destination hospitals, with individual interarrival time, dispatch time, response time, treatment time and conveyance time distributions.


rencentage of Fatients Diverted to CAC (76)	Ū	23	50	75	100
+2 ICU Beds	5.3	5.1	5.8	5	5.2
+1 ICU Bed	5	4.9	5	4.8	5.1
Base ICU Bed	4.4	4.3	4.9	4.4	4.6

Scenario 2: Scenario 1 with increased rates of OHCA occurrences by 1.1 (10% more OHCA occurrences)

Percentage of Patients Diverted to CAC (%)		25	50	75	100
+2 ICU Beds	4.4	4.8	4.6	4.8	4.8
+1 ICU Bed	4.5	4.3	4	3.9	4.6
Base ICU Bed	3.9	3.8	4.2	4.4	4.3

Scenario 3: Have CGH or KTPH as a new CAC hospital (4 CAC, 3 Non-CAC)

Hospital		CGH	КТРН	КТРН
Percentage of Patients Diverted to CAC (%)	50	100	50	100
Base Arrival Rate	4.5	5.2	4.2	4.6
1.05 times Arrival Rate	5.5	5.1	4.7	4.3
1.1 times Arrival Rate	4.6	4.5	5.2	4.4

■ Base interarrival rate ■ 1.05 times interarrival rate ■ 1.1 times interarrival rate

Generally, converting Changi General Hospital into a new CAC would be more beneficial for survival rates.

SKILL SETS

Data Management

• Extract, Filter, Transform, Load, Validate

Software Proficiency

- FlexSim
- Python
- Excel
- R •
- Miro

Project Management

- Project Scheduling
- Time Management
- Teamwork

Statistical Knowledge

- Odds Ratio
- Threshold
- Bayes' Theorem
- Logistic Regression