

Department of Industrial Systems Engineering and Management (ISEM)

IE3100R Systems Design Project | AY 2022/2023

Net Zero Emissions Estimation Research

Group 09 : Cindy Aurelia Ursia | Justin Hong Jing Cheng | Lim Chang Yu | Tan Qi Yun | Yan Jie Department Supervisor : Prof Adam Ng | Prof Ang Beng Wah Industry Supervisor : Jillian Teo | Dr Robert Li

7	Financial & Non-Financial (with Categorization)	10.84 (▲28%)	0.65 (▲23%)				
8	RFE	9.51 (▲37%)	0.69 (▲30%)				
Shuffle Split Cross Validation							
1	Revenue-based	14.88	0.53				
2	Financial	14.78 (🔺 1%)	0.42 (▼21%)				
3	Non-Financial	13.94 (▲6%)	0.56 (🔺 6%)				
4	Financial & Non-Financial	11.53 (▲23%)	0.63 (▲19%)				
5	Financial (with Categorization)	15.13 (▼2%)	0.23 (▼57%)				
6	Non-Financial (with Categorization)	13.44 (🔺 10%)	0.53 (0%)				
7	Financial & Non-Financial (with Categorization)	10.81 (▲28%)	0.61 (▲15%)				
8	RFE	<mark>9.36 (▲37%)</mark>	0.70 (▲32%)				
XGB Regression Results							
1	XGB (GridSearch)	14.56 (▼2%)	0.52 (▼1%)				
2	XGB (RandomSearch)	12.48 (▼16%)	0.65 (▲23%)				

	124.5		10 10	2,251 2,3	
3	RFE	20.07 (▲36%)	5.75 (▼36%)	<mark>9.35 (▲25%)</mark>	
Lasso Regression					
1	Revenue-based	35.37	4.24	12.16	
2	Stepwise	12.04 (▲66%)	5.19 (▼22%)	11.22 (▲8%)	
3	RFE	<mark>11.71 (▲67%)</mark>	5.61 (▼32%)	12.65 (▼4%)	

Summary of Best Performing Models:

Level	Model Type	RMSE (%)
Industrial	RFE with Multi-Linear Regression	9.36 (▲37%)
Sub-sector: Gas Extraction	RFE with Lasso Regression	11.76 (▲67%)
Sub-sector: Oil Extraction	Revenue-based with Ridge Regression	4.22
Sub-sector: Petroleum Refinery	RFE with Ridge Regression	9.35 (▲25%)

Further expand dataset to include more companies

More data points can display stronger patterns, hence improving model performance. (i.e. purchase databases)

More robust algorithms can be explored

May be better in handling more complex relationships and outliers in a larger dataset, thus improving estimation accuracy. (i.e. Random Forest, Deep Learning, AdaBoost)

Extend study to related sectors (Power, Metals & Mining)

Proposed method can be extended to other sectors for greater accuracy of SCB's financed emissions reporting. Non-financial features in these sectors are to be explored.

Achievements

Our results showed a **significant reduction in error rates** as compared to SCB's model. These findings were **well received** by our industry supervisors and also **brought to the upper management's attention**.

As the next step, SCB will be **further extending its collaboration period** with NUS ISEM. The team seeks to further build upon our current approach **based on our proposed future studies.**

There is a no one-size fits all approach to emission estimation.Accurate industry and sub-sectors estimations require different
features combinations due to their varying nature of activities.

Global problems requires economy-wide solutions. Joint efforts to expand datasets is instrumental to amplify SCB's

Joint efforts to expand datasets is instrumental to amplify SCB's results applicability & help our world transit to a net-zero future.

Data Processing and Cleaning, Feature Engineering, Estimation Models Development

Key Skillsets

Accounting of Greenhouse Gases (GHG) emissions and ESG reporting standards

Statistical Analysis Techniques (p-value, ANOVA, VIF) and Regression Techniques

