
Problem Description Objectives Key Skills

Data Extraction Data Cleaning API Pipeline

Network
Visualisation

Search Algo

Web APP

Methodology

Frontend

IE3100R System Design Project
Optimising Life Cycle of Test Wafers

NUS supervisor: A/Prof Aaron CHIA Eng Seng
Team Members: Cheng Zheng Ting | Lim Shi Pei | Liu Wei | Liu Zhe Pei

To maximise cost efficiency, test wafers are recycled or repurposed from different types of
test wafers to prolong their lifespan and avoid the initiation of new test wafers. This process
is also known as downgrading. Currently, the lack of a standardised method for
downgrading test wafers results in several challenges:

Cost: Our analysis has revealed an excess of more than 30,000 units even after accounting
for a 20% buffer, leading to more than $500,000 in unnecessary expenses.

Time: Another critical factor driving our project is the need to streamline the currently
employed time-consuming process which determines possible downgrade paths between
wafers. Technicians spend over 4 hours daily navigating an SQL database to manually
identify suitable downgrade paths based on their technical experiences. This process is
plagued by inefficiencies, primarily due to its reliance on extensive database knowledge and
meticulous examination.

Our aim is to optimise inventory
management using a wafer downgrade
algorithm and a visualisation dashboard for
effective inventory management planning,
thereby reducing the costs outlined.

By implementing a visual representation of
the test wafer inventory and its downgrade
relationships, we aim to drastically reduce
the time required for these tasks, enabling
more efficient Inventory management and
planning.

Front End:

Back End:

Project Management:

AGILE project management
framework.

Data Extraction: We extracted data from the Micron SQL Database to analyse and create a new
dataset that will be foundational for our solution.

Data Cleaning: This step involves wrangling the data and organising it into the correct data
structure suitable for our API pipeline. This pipeline is specifically designed to facilitate
seamless integration between the front end and back end of our solution.

API Pipeline: We aim to establish a pipeline that efficiently delivers packaged, real-time data to
both the front end and back end, ensuring timely and accurate data flow.

Network Visualisation: Using the vis.js package, we will represent the inventory data and its
corresponding downgrade paths in a network format. This visualisation will incorporate various
pieces of information, such as inventory levels, to provide a comprehensive view of the system.

Search Algorithm: We have implemented the Breadth-First Search (BFS) algorithm to identify
an optimal downgrade path for a test wafer. This approach aims to reduce excess inventory.

Web App: The front-end network visualisation and the back end search algorithm will be
integrated into a web application. This app includes additional features such as search
capabilities and an information pop-up window to enhance user interaction and accessibility.

User Interface (illustration)

Utilised HTML, CSS, and JavaScript for seamless integration with
Micron's in-house solutions network.
Dynamic network graphs for displaying wafer connections utilising
vis.js library.
Node color coding: grey (no minimum quantity), red (insufficient
inventory), green (surplus).
Search function for specific wafers or keywords, with auto-highlight
and fit.
Data updates every 15 minutes for real-time accuracy.
Highlight isolated and family-related nodes for inventory
management optimisation opportunities.
Pop-up display provides detailed wafer information.
Designed to enhance inventory management and user experience for
managers and technicians.

Downgrade Algorithm Overview:

Breadth First Search (illustration)

Capabilities of our backend solution
(a) Graph Modelling - Unweighted, directed graph using adjacency matrix
(b) Identifying Potential Source Nodes - For each target node, the algorithm initiates BFS traversal with an
inverted adjacency matrix
(c) Filtering Potential Source Nodes - From the list of nodes within the BFS traversal, the algorithm filters
out the shortage (red) nodes.
(d) Ranking Potential Source Nodes - Remaining excess (green) nodes are ranked in descending order
based on their percentage of excess inventory.

Percentage Excess = (Total inventory - minimum inventory) / minimum inventory
(e) Determining Downgrade Amount - With the helper function called ‘downgrade’, the downgrade amount
is calculated as the minimum value between excess inventory in source node and shortage in target node.
(f) Replenishment Process - Replenish the inventory from the first node in the ranked list.
(g) Expanding Range of Search - If the inventory in target node is not fully replenished after processing all
source nodes within the specified range, the algorithm will expand the search range and repeat the
replenishment process.
(h) Termination Conditions - Target node’s inventory is fully replenished or when algorithm exhausts all
suitable source nodes within the specified range.

Backend

Key Results

Cost Savings: The HTML website enhances user experience with
features like regular data updates, search capabilities, wafer
information display, and inventory health insights, resulting in
annual savings of approximately USD 500,000 by optimising wafer
downgrades and reducing wastage.

Improved Efficiency: Automating downgrade path generation saves
around 1,600 work hours annually, streamlining processes for
technicians and improving overall operational efficiency.

Algorithm Logic

Recommendations

Predictive Analytics Integration: Implementing machine learning models to predict test wafer
demands, aiming to reduce emergency procurement costs and inventory holding costs, thereby
optimising stock levels and enhancing operational efficiency and customer satisfaction.

Customisable Alerts and Notifications: Launching a customisable alert system for real-time inventory
oversight, designed to accelerate response times through threshold alerts and actionable
recommendations, improving inventory management and overall operational efficiency by minimizing
manual monitoring.

Migration to Angular Framework: Transitioning to the Angular framework to leverage its modular
structure for scalable, complex application development, facilitating easier integration with systems
and APIs, aimed at streamlining operations and future-proofing the platform.

