

CAPACITY MODEL MODERNISATION WITH SIMULATION FOR ABBOTT LABORATORIES

IE3100R SYSTEMS DESIGN PROJECT AY 23/24 | DEPARTMENT OF INDURTIAL AND SYSTEMS ENGINEERING **NUS Group 5**: Quek Yong Jun, Zhang Xiaowei, Lim Main Ray | **NUS Supervisor**: Prof Chen Nan | **Industry Supervisor**: Lester Eng

Challenge Statement: Modernise capacity planning approach through the development of a new capacity model

New capacity model should...

- Reduce time to model
- Ensure high realism
- Identify better ways to schedule →

This can be achieved with...

- → Automating processes
- \rightarrow Using statistical distributions \rightarrow
- → Scenario analysis

Project has...

- → Implemented automation scripts (M1)
 - Applied probabilistic models (M2)
- → Tested different crew schedules (M3)

M1: Simulation Building

 Input model auto-tags products family group to determine required key processing information at each equipment

Key components of model:

- Queues: Prevent overcapacity
- Databases: Record events sent from processor, important for event triggers (e.g. conditional cleaning of equipments)
- Processors: Update item status in database to reflect processing changes

M2: Enhance model realism with statistical distribution

Situation

Single point estimates used limits model realism Integrated ABT's empirical run time data for various products into the model

Approach

Impact

Model reflects more accurately actual production conditions

Insights²

- Probabilistic model runtimes closely match deterministic model
- Probabilistic model shows a higher mean efficiency rate than deterministic model
- Identified equipment that is pivotal to overall productivity 2: Figures have been sanitised for confidentiality

M3: 'What-if' Analysis

Insights

Reducing crew workdays to 5.3

	Deterministic	Probabilistic (Pouch variability)	Probabilistic (Dryer & Pouch Variability)	
Mean	1,796.5	1,796.4	1,796.1	
Variance	0.0	0.1	1.7	

Scenario Analysis (Probabilistic)

Scenario analysis (Deterministic)

Approach

- Scenarios: 5-7 operating days/week.
- Conducted 100
 replications (automated)
 for validation
- KPIs: Median total run time, IQR

showed minimal impact on median run time, implying a feasible shorter week without efficiency loss.

 Variability in runtime rose with fewer days, especially below
 5.3, suggesting a critical boundary where processes may lose effectiveness.

Limitations

Model limited to current products; updates needed for new integration

Future Directions

1.Perform more scenario analysis 2.Expand scope of simulation ISE Skills Simulation design & modelling Statistical analysis