

DEVELOPING ENVIRONMENTAL INDICATORS FOR ASTHMA **EXACERBATION MANAGEMENT IN SINGAPORE**

Group 13 Team Members: Cheyenne Chia, Lee Yng-Yng, Ryan Quek Wei Heng, Tang Yee Teng NUS Advisor: A/P Zhang Junyu | Industry Supervisors: Sean Lam; Adam Quek; See Wei Qiang; Wu Juntian

Defining Tomorrow's Medicine

Introduction

Problem Description

1 in 10 Singaporeans suffer from Lifetime Asthma,

resulting in an estimated annual economic burden of \$2.09 billion

Asthma outcomes are multifaceted, a complex interplay of medical and **non-medical factors** collectively known as Social Determinants of Health (SDOHs), revealed to account for up to 80% of health outcomes.

and many more ...

Project Aims & Objectives

To (i) **synthesise** a **representation** of environmental SDOHs impacting asthma patients in Singapore, and (ii) generate evidence-based insights to inform more precise and targeted asthma management **interventions**, by:

(i) Utilising open-source data to develop and validate methodological approaches for quantifying environmental SDOH factors that influence asthma exacerbation risk; and

(ii) Conduct statistical analysis to identify key **environmental risks**, thereby establishing the foundation for targeted interventions.

SDOHs: "the conditions in which people are born, grow, work, live, and age, and the wider set of forces and systems shaping the conditions of daily life" (World Health Organization, 2013)

Data Sources & Characteristics

Public housing postal codes were extracted exclusively from the public

housing dataset to form a master open-source database.

were aggregated from 2017 to 2018. 2019 LandUse MasterPlan used to

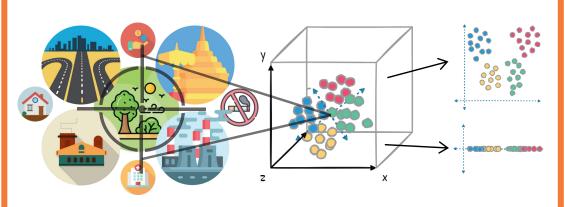
Daily PSI and pollutant readings of each

region (North, South, East, West, Central)

calculate the **nearest Euclidean distance** between each postal code and land use

RIGOUR. RELEVANCE. UTILITY

areas (Roads, Green spaces, Business 1, Business 2, Religion).



21,215 patients and their 2019 exacerbation counts, filtered to **15,214** patients residing in public housing.

Methodology I: Indicator Creation

Principal Component Analysis (PCA)

Dimensionality Reduction (DR) technique that transforms a set of correlated features into a new set of uncorrelated variables, known as **Principal Components (PCs)**, while preserving maximal variance.

E.g. 100 or more SDOH factors, of unknown individual importance, all compressed into a mere few Principal Components (PCs)

Methodology II: Indicator Validation

(a) Construct Validation

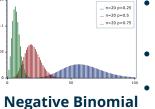
Validate if the PCs obtained are able the selected represent environmental SDOH variables.

Select Reference Standard Construct concordance with the 01 Pollutants Standard Index (PSI)

Geospatial Reconcilation Mapping of postal codes to regions (East, West, North, South, Central)

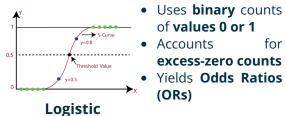
Correlation Analysis Use Pearson Correlation to examine

exposure-response relationships **Methodological Adaptation**


There are only five PSI (NEA) regions, hence, high data interdependency

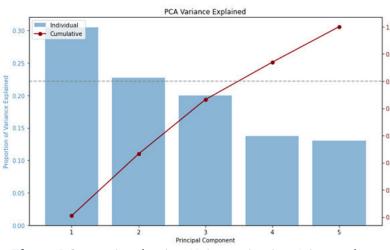
• Deprioritised use of p-value • Prioritised use of r: $(|r| \ge 0.75) \approx \text{strong}$

Extracted example of Mapped Patient Dataset								
Postal	District		distance_temple		PSI_Region	PC1_Score_Rev	PC2_Score	PC3_Score
520351	East		0.95441299		79	1.715537	2.317094	3.752001
750493	North		1.80400358		94	-4.048429	-0.252622	-1.133357

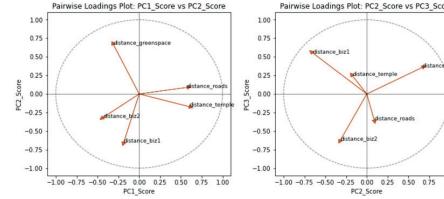

(b) End-Use Validation

Apply output-validated indicator to **SingHealth patient data**; check for over-dispersion and excess-zero counts; fit to regression models to validate relationship between indicator scores & exacerbation counts.

Uses top 5%-winsorised exacerbation counts (2019) of **values [0, 7]** Accounts for


overdispersion Yields Incident Rate Ratios (IRRs)

of values 0 or 1 Accounts excess-zero counts Yields **Odds Ratios**


Results & Discussion

PC Selection & Indicators Creation

Three PCs retained using Kaiser criterion (eigenvalue > 1): • To ensure consistent interpretability of PC scores, the coefficients of PC1 loadings were reversed

coefficients of PCT loadings were reversed							
Feat. / PC	PC1	PC2	PC3				
Distance to nearest temple	0.5987	-0.1711	0.2419				
Distance to nearest CAT1 road	0.5722	0.0880	-0.3511				
Distance to nearest "Business_1" labelled zone	-0.1841	-0.6503	0.5536				
Distance to nearest "Business_2" labelled zone	-0.4310	-0.3162	-0.6205				
Distance to nearest greenspace	-0.3074	0.6634	0.3559				
Individual PC Eigenvalue	1.5250	1.1356	1.0004				

PCs validate the hypothesised **inverse relationship** between green spaces and pollution sources.

Validation Against PSI & Its Constituents

Reversed PC1 (Urban_Pollution)

• Strongly correlated with SO₂ (r=0.86), attributed to vehicular emission and religious burning

PC2 (Greenspace_Mitigation)

- Strongly correlated with CO (r=0.76) & SO₂ (r=-0.79)
- Partially aligned expectations, as high CO levels could be attributed to combustion patterns from light industrial PM, but contradict expectations where SO₂ levels are low despite increasing distance from green spaces

PC3 (Industrial_Pollution)

- Strongly correlated with PM10 (r=-0.98) & PM2.5 (r=-0.77)
- Activities within the "Business 2" zones (labelled by URA), does not effectively capture correlations against environmental pollutants such as PM10 & PM2.5

Validation Against Patients' Exacerbation Counts

Negative Binomial Regression Results						
Parameter	Coeff	IRR	90% CI	p-value		
Urban_Pollution	0.0366	1.0373	1.0211 — 1.0538	1.28E-04		
Greenspace_Mitigation	0.0033	1.0033	0.9857 — 1.0214	0.7615		
Industrial_Pollution	-0.0397	0.9610	0.9458 — 0.9766	4.84E-05		

Logistic Regression Results						
Parameter	Coeff	OR	90% CI	p-value		
Urban_Pollution	0.0682	1.0707	1.0424 — 1.7862	2.83E-05		
Greenspace_Mitigation	-0.0162	0.9839	0.9544 — 1.0147	0.3846		
Industrial_Pollution	-0.0048	0.9952	0.9682 — 1.0234	0.7774		

Significant p-values (<0.05) demonstrate indicators' success in quantifying the **relationship** against patients' asthma exacerbation counts.

Conclusion

Key Findings

- **Urban_Pollution: IRR=1.037, OR=1.07** Each unit increase **raises** exacerbation **counts** by **3.7%** and **odds** of experiencing exacerbation (counts \geq 1) by **7%**.
- **Greenspace_Mitigation:** No significant relationship with asthma exacerbation.
- Industrial_Pollution: IRR=0.9610 Each unit increase reduces exacerbation counts by 3.9%

Significance of Findings

Strategic urban environmental interventions should be implemented

- Measures, beyond green spaces, should be explored to find a better representation of the mitigating factors of pollutants
- Asthma exacerbation has a more complex and nuanced relationship with "Business_2" labelled zones, necessitating further studies

Limitations & Future Work

Regionally limited patient data: SingHealth facilities concentrated in the **East** and **North-East** regions

• Collaborate with additional healthcare providers to construct a more balanced distribution of patients across different regions

Limited scope of SDOH: only environmental factors explored despite multiple facets/dimensions of SDOHs of Asthma

• Incorporate other dimensions (i.e. socioeconomic, behavioural etc.)

exacerbation data are available • Longitudinal cohort studies of patients spanning multiple years, even

decades, provides more robust temporal insights

Data Analytics **Geospatial Data Utilization**

Temporal limitations: only single-year,

Group Collaboration | Communication

single-valued

patient