IE3100R Systems Design Project

FORECASTING CARBON INTENSITY

Department of Industrial Systems Engineering & Management College of Design and Engineering

Group 15:

Chew Xun Yu Jaylen, Tan Yang Keat, Zhang Xiao, Chin Wei Herng, Gladys Phua Ying Xuan

Academic Advisors:

Dr Wang Zhiguo, A/Prof Ng Tsan Sheng, Adam

Industrial Advisors:

Lloyd Lee Wangru, Justin Choo Jie Hui

INTRODUCTION

This project is designed to enhance data-driven investment strategies by developing a robust emissions forecasting model. The model projects Scope 1 and 2 carbon intensity trajectories (tCO₂/\$revenue) for all MSCI ACWI Index constituents through 2050, enabling the calculation of portfolio-level weighted average carbon intensity (WACI) and assess climate-related financial risks.

S&P Global

- Annual carbon emissions (tCO2) of Scopes 1-3, for more than 19,000 companies
- Total revenue of companies per fiscal year
- Classification of industries between companies

DATA SOURCES

- Includes multiple emissions, intensity or energy reduction targets per company
- Coverage of emissions reduction efforts
- Scope of emissions reduction efforts

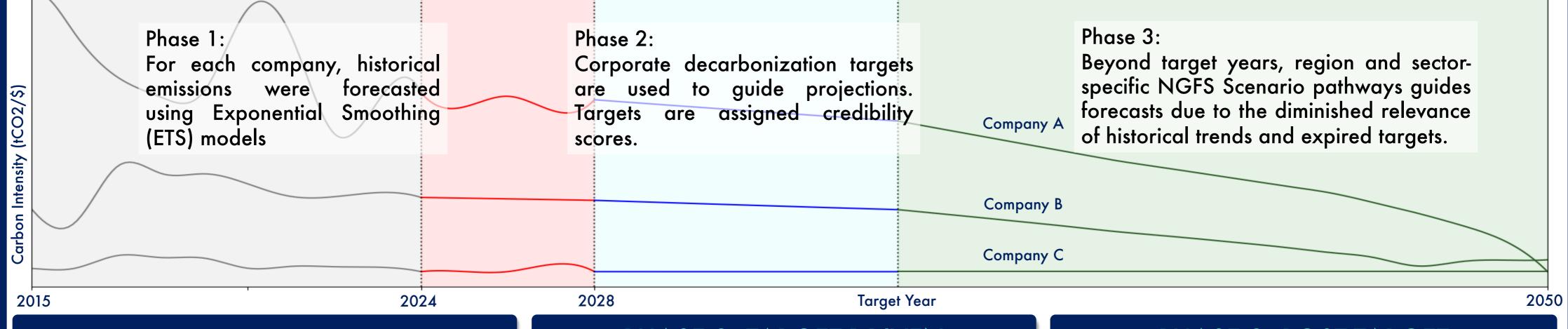
- Emissions trajectories of various scenarios: Net Zero 2050, Delayed Transition, Fragmented World, Current Policies
- Able to drill down by region and industry

S&P TRUCOST ENVIRONMENTAL

MSCI ESG TARGETS

NGFS SCENARIO EXPLORER

THREE-PHASE FORECASTING MODEL FOR CARBON INTENSITY



PHASE 1: HISTORICAL TREND

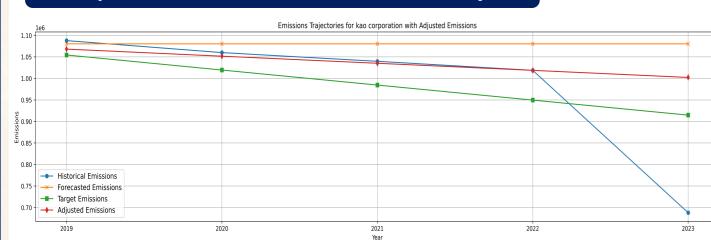
Time-Series Forecasting (ETS)

 $\widehat{Y_t} = L_{t-1} + hB_n + SN_{n-L}$ Where:

- \hat{Y}_t : forecast at time t • L_{t-1} : smoothed level at t-1
- B_t: trend of the series
- h: forecast horizons
- SN_{t-L}: seasonal adjustment, offset by seasonal lag L

Each company's model is configured by minimizing the Akaike Information Criterion to balance pattern adaptation and avoid overfitting.

Optimization of Forecast Accuracy



This is an example of a suboptimal emissions forecast upon back-testing. Linear Programming is used to minimize the forecast error by blending both time-series and targets:



 $\left(\frac{1}{N\times Y}\right)\sum\sum$ Absolute Percentage Error(n, y)

- N: number of companies
- Y: Year 2019 2023
- Optimizes for the ideal forecast and target emission weightage across the projection period

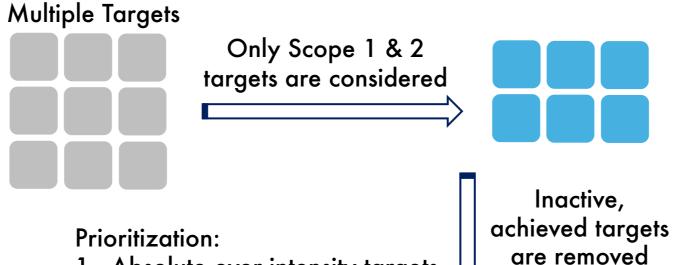
For each company:

Where:

- w_f: weightage of forecasts
- w_{t,}: weightage of targets
- $E_{b,n} = E_{f,n} \times w_f + E_{t,n} \times w_t$
- E_{b,n}: blended emissions at year n
- $E_{\rm f.n}$: forecasted emissions at year n
- E_{t.n}: target emissions at year n

PHASE 2: TARGET-DRIVEN

Target Selection Methodology



- 1. Absolute over intensity targets
- 2. Latest baseline year
- 3. Ambition
- 4. Recent announcement date

Credibility Assessment Matrix

Description	Weight	2032	2032	Approved Target	Committed to SBTI Target
No SBTI validated targets	25%	2 / X	2 / X	×	☑/ ×
Has SBTI validated long- term targets, without a transition plan	50%	×	2 / X		×
Has SBTI validated short- term targets, without a transition plan	75%	V	2/X	V	×
Has both short and long-term SBTI targets supported by a transition plan	100%	▼	☑/×	V	~

Emissions_t

- = Emissions_{t-1} Targeted Carbon Reduction \times **Credibility Score**
- A 50% credibility score means the company is expected to achieve half its stated emissions reduction

SKILLS APPLIED

Python

Management

Forecasting

ESG & Climate Modelling

PHASE 3: POST-TARGET

NGFS Scenarios Used Fragmented World Low Demand 2020 Blended Scenario Decarbonization Rate(t)

 w_1 , w_2 , w_3 , w_4 , are equally weighted by default 1. Net Zero 2050 (S₁): A fast, coordinated transition to limit warming to 1.5°C, reaching net zero by

 $= s_1 \times w_1 + s_2 \times w_2 + s_3 \times w_3 + s_4 \times w_4$

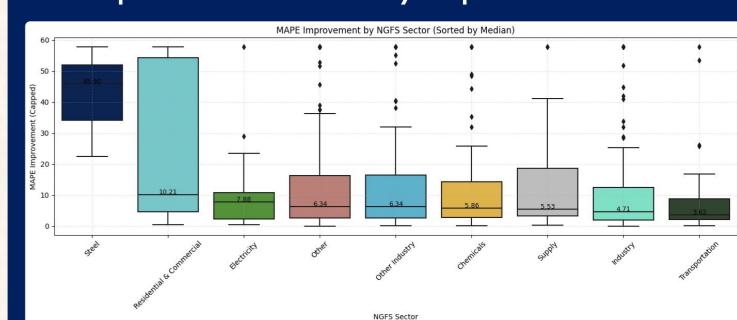
2050

- 2. Delayed Transition (S₂): Emissions increase till 2030, resulting in strong policies to limit warming to 2°C
- 3. Fragmented World (S₃): Delayed and divergent climate policy ambition globally, leading to high physical and transition risks
- 4. Current Policies (S_4) : Assumes that only currently implemented policies are preserved, leading to high physical risks

RESULTS (Phase 1)

Adjustment	Median RMSE	Median MAE	Median MAPE (%)
Pre-Optimization	118,435.005	103,424.033	28.190
Post-Optimization	94,372.364	77,635.636	24.909

Post-optimization accuracy improvements:



ACHIEVEMENTS

- Delivered a robust projection model for over 2000 companies across 50+ industries
- · Procured and utilized industry-leading data sources, ensuring scalability of model in the future Developed in conjunction with ESG experts at GIC