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2. Problem Definition

1. Background

evaluation set

Skills Used

Concord New Energy Group Limited (CNE), headquartered in Although the Energy Market Company (EMC) provides price (USEP) forecasts _
Singapore, is a growing player in global renewables. This project based on privileged market data and a Linear Programming model, their approach Programming (Python,
supports CNE’s entry into the Singapore wholesale electricity market does not incorporate time-series or ML techniques. We saw an opportunity to build a R), Data Wrangling
as a renewable energy provider and an energy storage system competitive model using publicly available data and reputable third-party sources —  _
operator. To enable electricity arbitrage, we developed a short-term leveraging EMC's demand forecasts, commodity prices, and historical USEP trends H I Statistics,
price forecasting model using time-series and deep learning methods. — to extract latent supply-side signals without access to market bids. " Machine Learning
3. Methodologies
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.+ 3 Main Data Sources: Eg comey 11+ Statistical Tests: .| + LSTM-based * Recursive forecasting

| (1) EMC: historical and remmmeE w1 Kruskal-Wallis Test, adjusted Rz, 1 model with stacked - Metrics: Mean Absolute

: forecast USEP/Demand S&P Global '— Spearman’s Correlation — and bi-directional Error (MAE), Mean
|: (2) Platts for commodity Dlatts . | * Time-Series Tools: ACF/PACF L layers Absolute Percentage

: prices —  plots — 1+ Hyperparameter : | Error (MAPE)

i (3) Data.gov.sg for weather &) data.gov.sg !  Engineered Features: lags, | tuning over ey Gt 0010 Ss0man 00T 022 | i

moving average, rate of change

4. Training, Evaluating, and Testing Splits 5. Feature Selection

We selected the longest clean, continuous stretch of data (Feb—Oct 2024) for ( Rruskal — Wallis Test
model training and evaluation. Testing was conducted on recent data windows e Categorical Features on Demand + Adjusted
(Jan—Feb 2025), during which manual collection of EMC forecasts enabled realistic Kruskal — Wallis Test on USEP: R2:
benchmarking. Significant > Temporarily Kept NEO al:dded val Igulel
« Train Set: Start of Feb 2024 to End of Aug 2024 (6 months) } Cleanest continuous
 Evaluation Set: Start of Sep 2024 to End of Oct 2024 (2 months) streteh e Numerical Features e Lagged Features
« Test Set 1: 13 Jan 2025 to 21 Jan 2025 (effective: 5 days) Spearman’s Correlation on USEP:
ACF/PACF on USEP
. Test Set 2: 23 Jan 2025 to 31 Jan 2025 (effective: 5 days) Manual data Kept: Demand, Coal SEA, HSFO, LNG

collection period

Kept: t-1, t-5, t-48, t-96 =l

Dropped: Temp., R. Humidity, etc.

« Test Set 3: 10 Feb 2025 to 20 Feb 2025 (effective: 7 days)

6. Feature Engineering /. Model Architecture

Finalized list of features for the model: Architecture chosen based on trial, literature, and validation performance. Bi-directional LSTM captures time dependencies in
] both directions; stacked LSTMs enable hierarchical feature extraction; dense layers map learned features to final USEP
USEP }/ﬂv 11) Demand MA_6 prediction; activation (Tanh/ReLU), L2 regularization, dropout, learning rate learned obtained by optimising hyperparameters.
il 128 -~
USEP t-5 yi| 13) Demand MA_24 (128) — Prediction
it + tanh &
USEP t-48 pfitts” 14) Demand ROC_t L2 reg
I'I|'|F| 8. Evaluathn and TeStIng Prediction: Data at T = 00:00:00
USEP MA_6 M 17) Demand ROC—24 [a]] A | Commodities
pn\ﬂﬂ' 18) Demand (MW)  Recursive Forecasting —.At TOO:OQ, the model predlc?ts QSEP for t+1 using all Deman
USEP MA_12 auotl known values, then recursively predicts t+2 to t+47 using its own outputs. [
« Realistic Deployment Simulation
&S 19) Coal SEA— CSEA00 _ | ol Pl e e
USEP MA_24 > ) - Evaluation: Used actual demand (forecasts not available) UL DILILE R nd
W 10) Demand MA_3 é\o 20) HSFO 2% SG — PUAXS00 . Testing: _Used EIV!C’s den_1and forecasts to simulate real-vyorld deplo_){ment Prediction: Start of Step 1 {first)
st - =, « Fair Comparison during Testing — Both models use the same input conditions “ . [— Commoitios
=1 21) LNG JKM — LNJKAQO (forecast demand). We then compared our predictions against forecast USEP. Demand
Results
9. Alternative Models Our Forecast EMC’s Forecast /AR N NS SEE
. . . Overall MAE: 11.52 Overall MAE: 7.06 .
Before adopting the LSTM-based model, we tested various simpler Overall MAPE: 10.18% e e orie o Prediction: Start of Step 2
i i i Daily Errors: Daily Errors: A Use prvious dey’s troughat iti
app_roaCheS under.earller SetUpS. Whl_le n01.: dIr_eCtIy Comparat_)le _due Test Set 2025-01-16: MAE = 10.44, MAPE = 10.07% 2025-01-16: MAE = 5.82, MAPE = 5.84% “ ” Gommodites
to different evaluation methods, the trials highlighted their limitations 2025-01-17: MAE = 8.42, MAPE = 7.80% 2025-01-17: MAE = 6.80, MAPE = 6.56% Demand
T . 1 2025-01-18: MAE = 10.46, MAPE = 9.77% 2025-01-18: MAE = 6.16, MAPE = 5.95%
and the value of realistic testing. 2025-01-19: MAE = 10.42, MAPE = 9.92% 2025-01-19: MAE = 8.17, MAPE = 7.73% e
oo . : [ 2025-01-20: MAE = 8.67, MAPE = 7.90% 2025-01-20: MAE = 3.64, MAPE = 3.87% —*p-- i | usep
1) Splitting by spikes vs non-spikes e 2025-01-21: MAE = 20.69, MAPE = 15.61% 2025-01-21: MAE = 11.77, MAPE = 9.15%
No spike data set " ARIMA == Overall MAE: 9.94 Overall MAE: 15.21 e
Overall MAPE: 8.13% Overall MAPE: 13.71% Prediction: Start of Step 46
/ Daily Errors: Daily Errors: “ - ” T Commodities
o Test set 2025-01-26: MAE = 9.70, MAPE = 8.64% 2025-01-26: MAE = 18.90, MAPE = 16.06%
Original data set 2025-01-27: MAE = 31.93, MAPE = 19.75% 2025-01-27: MAE = 27.67, MAPE = 17.81% [F] - [F] [F] pemand
Spike occurrence * Logistic Regression / Others 2 2025-01-28: MAE = 4.09, MAPE = 4.58% 2025-01-28: MAE = 4.49, MAPE = 4.96%
\\\\ //// 2025-01-29: MAE = 3.62, MAPE = 3.91% 2025-01-29: MAE = 11.78, MAPE = 12.67% —
2025-01-30: MAE = 5.13, MAPE = 5.85% 2025-01-30: MAE = 15.17, MAPE = 16.11% A I I dplipii i usep
Spike only data set 2025-01-31: MAE = 5.18, MAPE = 6.03% 2025-01-31: MAE = 13.27, MAPE = 14.66% REWN
Spike magnitude * Linear Regression / Others Overall MAE: 44.28 Overall MAE: 32.01 Prediction: Start of Step 47 (last)
Overall MAPE: 19.20% Overall MAPE: 10.48%
2) Spllttlng by category labels Daily Errors: Daily Errors: | A [E— Commodities
2025-02-14: MAE = 14.06, MAPE = 12.10% 2025-02-14: MAE = 6.18, MAPE = 5.26%
Sub dataset1 —— | * Linear Regression / Others Test Set 2025-02-15: MAE = 21.43, MAPE = 15.12% 2025-02-15: MAE = 23.00, MAPE = 17.30% Demand
3 2025-02-16: MAE = 16.82, MAPE = 17.69% 2025-02-16: MAE = 9.47, MAPE = 9.31%
split by category  gup dataset?2 —— * Linear Regression / Others 2025-02-17: MAE = 181.18, MAPE = 34.19% 2025-02-17: MAE = 161.54, MAPE = 22.96% {
Original data set > 2025-02-18: MAE = 33.93, MAPE = 24.05% 2025-02-18: MAE = 10.23, MAPE = 7.58% E|~|E|—|E~P USEP
6.9. weather 2025-02-19: MAE = 29.79, MAPE = 20.53% 2025-02-19: MAE = 10.69, MAPE = 8.28%
condition (1=7) . yataset n + [~ Linear Regression/ Others 2025-02-20: MAE = 12.73, MAPE = 10.74% 2025-02-20: MAE = 2.94, MAPE = 2.64%
[A] - Actual [P] - Predicted [F] - Forecasted
10. Limitations 11. Future Directions 12. Conclusion
« Manual forecast collection at midnight led to occasional data « Automate data collection (e.g. via web scraping, if allowed) Accurate electricity price forecasting may be
gaps and hence limited forecast data * Train time-specific models to reduce recursive error accumulation possible without privileged bid/offer data.
« Limited forecast data meant it was not used in training « Explore transformer models/reinforcement learning/other Al Our LSTM-based model showed promise in stable
« Evaluation limited to daily comparisons (EMC updates every 30 models as a potential upgrade over LSTMs conditions, with room to improve on extreme price
min) * Improve spike handling (e.g. with anomaly-aware loss functions) spikes.
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