MINIMIZING NON-COMPLIANT INCENTIVES VIA INTELLIGENT LOGISTIC COMPLIANCE TERM (LCT) OPTIMIZATION

Department of Industrial Systems Engineering and Management

IE3100R Systems Design Project - Group 20B

SDP Supervisor: Assistant Professor Qin Hanzhang

Procter & Gamble Supervisor: Mr Benjamin Yeo

Group 20 Members: Daniel Chin Yong Jie | Edward Sanjaya | Joel Lo Liang Ze | Sidharth Rajesh

PROBLEM OVERVIEW

At P&G, Logistic Compliance Terms (LCT) are designed to encourage effective customer ordering behaviours.

However, frequent non-compliance with these agreements has resulted in **delivery inefficiencies**, highlighting the need for improvements.

To safeguard logistics performance and ensure discounts are meaningfully awarded, it is critical to track compliance accurately and optimize these LCT for long-term operational effectiveness.

OBJECTIVES

KEY OBJECTIVES

Develop a Python model to optimize MOQ based on customer behavior, providing actionable insights to aid LCT negotiations and improve compliance.

Ensure Operational Compliance

Enable at least 99% order frequency compliance to streamline operations.

Optimized Discount Allocation

Align the **discount factor** with data-backed targets, focusing on non-compliant customers.

X Automated Computation

Standardize monthly evaluations using a Python-based model for scalable, repeatable reporting.

METHODOLOGY

10000

8000

6000

4000

2000

4000 -6000

-8000

-10000

-12000

-14000

Client Engagement

Coordinate with stakeholders to address issues and align goals

Data Processing

Collect, clean, and transform raw data into a structured format

Non-compliant Orders < MOQ of 1200

31 41 51 61 71 81 91 101

Incentives Provided per Order No.

Model Development

Design and optimize algorithms based on processed data

Results Analysis

Evaluate model performance to validate accuracy and reliability

Implementation

Deployment of model with seamless integration and effective functionality

Cost-Benefit Analysis

Statistical Modelling

Supply Chain Optimization

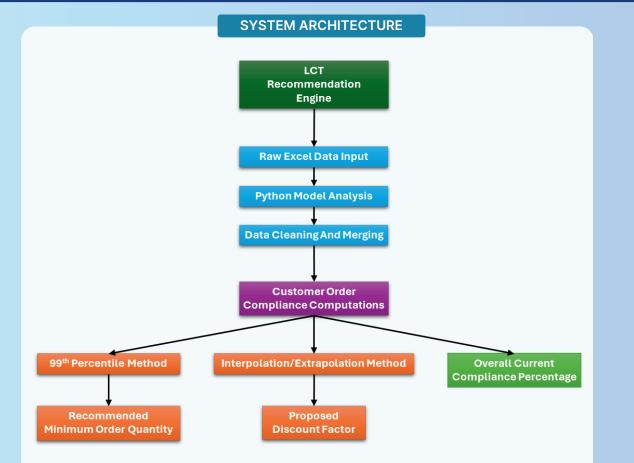
PROJECT IMPLEMENTATION

DATA PROCESSING 24-Month Study of Order Quantity vs Order No. 3500 Minimum Order Quantity 2500 (MOQ): 1200

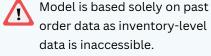
SOURCE

24 months of customer order data from P&G's global market

Developed a **Python**-based pipeline to perform data cleaning, standardization, and aggregation.


OUTCOME

Consolidated and structured dataset from 200 columns to 20 essential columns for analysis, enabling streamlined computations.


MAIN DRIVER

Data interpretation led to insights on non-compliant customers.

LIMITATIONS

Incomplete data for key metrics like order weight and volume limits analysis depth.

KEY TAKEAWAYS

≟ Minimise Value Leakage Non-compliant customers were swiftly identified through our model, enabling timely action to increase compliance

rates. Informed Decision Support While the recommended MOQ is based on data-driven insights, final decision remains with P&G's business team to

align with their set objectives.

99TH PERCENTILE METHOD: COMPLIANCE AND MOQ COMPUTATION

Discounts Given

Despite Non-Compliance

Order Quantity	Discount Amount	Discount Amount / Total Sum of Discounts	Cumulative Sum %	Compliance 9
622	-3294	0.021%	0.021%	100.000%
634	-3379	0.022%	0.043%	99.979%
634	-3379	0.022%	0.065%	99.957%
638	-3396	0.022%	0.087%	99.935%
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
754	-3773	0.024%	0.877%	99.148%
763	-3513	0.023%	0.899%	99.123%
763	-3513	0.023%	0.922%	99.101%
763	-3543	0.023%	0.945%	99.078%
763	-3543	0.023%	0.968%	99.055%
763	-4198	0.027%	0.995%	99.032%
763	-4198	0.027%	1.023%	99.005%
765	-3555	0.023%	1.046%	98.977%
766	-3401	0.022%	1.068%	98.954%
767	-3466	0.022%	1.090%	98.932%

MOQ threshold

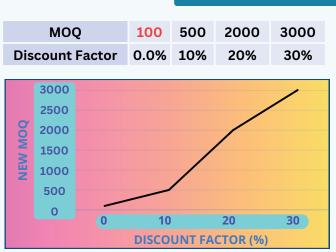
Minimum Order Quantity (MOQ) Recommendation

MOQ are derived such that customers can meet compliance at least 99% of the time, ensuring operational efficiency.

COMPUTATIONAL PROCEDURE:

1 Organize and sort customer's Average Order Quantity against Discount Amount.

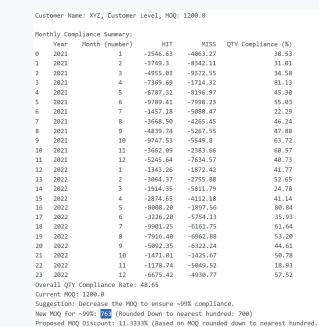
2 Compute Cumulative Discount Distribution of all orders.


3 Identify **MOQ threshold** that encompasses 99% of total discounts, proposing this as the new quota benchmark.

Benefits of Method

This methodology allows for adjustable compliance targets based on business

The model will recommend to increase the MOQ even when compliance is achieved, supporting greater efficiency and profitability.


INTER/EXTRAPOLATION METHOD: DISCOUNT FACTOR

Discount Factor Derivation

Optimal discount rates are interpolated/extrapolated based on the recommended MOQ.

- Discount factors are calibrated for each recommended MOQ.
- A customizable threshold policy (100) is incorporated to ensure no discounts are offered for inefficient small

Case Study:

Overall Compliance Rate of Customer XYZ over a time horizon of 24 months processed by the Python model. Corresponding Proposed Discount aligns with new MOQ.

BENEFITS & ACHIEVEMENTS

PROJECT BENEFITS

- Improve compliance among non-compliant customers.
- **Enables more efficient customer order behaviour across**

EXECUTE KEY ACHIEVEMENTS

- Constructed a scalable framework which P&G can utilise in other markets.
- Analysed P&G order data to inform critical business decisions.
 - Leveraged ISE-acquired expertise in statistical and analytical modelling to address business needs in the global market.

FUTURE DIRECTION

- (C) Further scale the model to other markets.
- (🤘 Integrate market-specific LCTs for more nuanced recommendations.
- Include analysis of order frequency variance to identify non-compliance due to uneven shipment distribution.
- $oldsymbol{(\zeta)}$ Automate dashboard generation to monitor quota compliance over time.