MSE Master of Science Course Baskets (Cohort Matriculated in AY2024/2025)

- Page 1, 2 & 3: Course Lists and Other Important Pointers
- Page 4: Graduation Requirements (No Specialization)
- Page 5: Graduation Requirements (Specialization in Advanced Materials for Energy & Sustainability)
- Page 6: Graduation Requirements (Specialization in Artificial Intelligence for Functional Materials)

MLE Core Basket (Requirements at least 12 Unit)

	MLE5001*	Basics of Structures & Properties of Materials
	MLE5002*	Materials Characterization
	MLE5101	Thermodynamics for Sustainability
MLE Core basket	MLE5102	Mechanical Behaviours of Materials
	MLE5104	Physical Properties of Materials
	MLE5211	Nanomaterials
	MLE5212	Energy Conversion & Storage
	MLE5214	Advances in Polymeric Materials
	MLE5215	Atomistic Modelling of Molecules and Materials
	MLE5216	Introduction to Microscopy for Material Research

^{*} You are strongly advised to take MLE5001 and MLE5002, if you do not have a B.Eng degree in a subject related to MSE

Flective Basket

Elective Basket		
	MLE5003	Materials Science & Engineering Project (8 Unit)
	MLE5208	Photovoltaic Materials
	MLE5210	Modelling and Simulation of Materials
MLE5213 Magnetic Materials MLE5217 Foundations of Machine Learning for Materials S MLE5218 Materials Discovery with Al		Magnetic Materials
		Foundations of Machine Learning for Materials Science
		Materials Discovery with AI
Elective Basket	MLE5219	Materials Informatics: The Role of Big Data
	MLE5220	Finite Element Method in Materials: Basic Concepts and Problem Solving
	MLE5221	Designing Materials for Renewable Fuels and Clean Water
	MLE5222	Nano and 2D Materials for Energy Applications
	MLE5223	Rational Materials Design for Sustainability
	MLE5224	Degradation of Materials
	MLE5225 Electro-Active Materials for Sustainability	
	MLE5226 Problem Solving for Future Sustainability Challenges	
	MLE5228 Superconductivity and Superconducting Devices	
	MLE5229	Advanced Materials for Microelectronics
	MLE5232	Dielectric Materials and Applications
	MLE5233	Functional Electronic Devices of Tomorrow
	MLE5234	Materials for Optics: From Quantum Light to Nanodevices
	MLE5235	Two-Dimensional Materials
	MLE5236	Electron Transport in Novel Quantum Materials
	MLE5238	Bioelectronics
	MLE4207	Microfabrication Process and Technology
	MLE6103	Structures of Materials
	CE5604	Advanced Concrete Technology
	CN5161 Polymer Processing Engineering	
	CN5251 Membrane Science & Technology	
	ME5513	Deformation, Fracture and Fatigue of Materials

Specialization in Advanced Materials for Energy and Sustainability***

	MLE5101	Thermodynamics for Sustainability ††
	MLE5003	Materials Science & Engineering Project (8 Unit)
	MLE5208	Photovoltaic Materials
Advanced Materials	MLE5212	Energy Conversion & Storage
for Energy and	MLE5221	Designing Materials for Renewable Fuels and Clean Water
Sustainability	MLE5222	Nano and 2D Materials for Energy Applications
	MLE5223	Rational Materials Design for Sustainability
	MLE5224	Degradation of Materials
	MLE5225	Electro-Active Materials for Sustainability
	MLE5226	Problem Solving for Future Sustainability Challenges

- *** To qualify for Specialization in Advanced Materials for Energy and Sustainability:
 - Students must pass 20 Unit of specialization-related courses.
 - Students must take 1 compulsory course: MLE5101 Thermodynamics for Sustainability (4 Unit). ††
 - The remaining 16 Unit can be chosen from the table above.
 - For students who does not meet requirements to complete specialization at the end, the courses will be classified where relevant e.g., MLE Core Basket, Elective Basket

Specialization in Artificial Intelligence for Functional Materials****

Artificial Intelligence for Functional Materials Elective Basket	MLE5217 Foundations of Machine Learning for Materials Science†††	
	MLE5003 Materials Science & Engineering Project (8 Unit)	
	MLE5215/CN5215 Atomistic Modelling of Molecules and Materials	
	MLE5218 Materials Discovery with Artificial Intelligence	
	MLE5219 Materials Informatics: The Role of Big Data	
	MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solving	
	MLE5223 Rational Materials Design for Sustainability	

- **** To qualify for Specialization in Artificial Intelligence for Functional Materials
 - Students must take 1 compulsory course: MLE5217 Foundations of Machine Learning for Materials Science†††
 - Students must take 16 Units from the Artificial Intelligence for Functional Materials basket.
 - Total 20 units of specialized courses

[^] All courses are 4 Unit unless stated differently, please double check the Unit in the **NUSMods** website used for timetable planning. Not all courses will be available every semester or every academic year.

[^] All courses are 4 Unit unless stated differently, please double check the Unit in the NUSMods website used for timetable planning. Not all courses will be available every semester or every academic year. Other Important Pointers:

- Part-time students are not allowed to take MLE5003 due to high time commitment and heavy workload.
- MLE5208 and MLE4208 are **preclusions** to each other. You can only take either 1.
- MLE5212 and MLE4210 are **preclusions** to each other. You can only take either 1.
- MLE5214 and MLE4202 are preclusions to each other. You can only take either 1.
- MLE5221 and MLE4221 are **preclusions** to each other. You can only take either 1.
- MLE5224 and ME5506 are **preclusions** to each other. You can only take either 1.
- MLE5228 and PC5218 are **preclusions** to each other. You can only take either 1.
- MLE5232 and MLE3105 are **preclusions** to each other. You can only take either 1.
- MLE5234 and MLE4219 are **preclusions** to each other. You can only take either 1.
- MLE5235 and MLE4220 are **preclusions** to each other. You can only take either 1.
- MLE5236 and MLE4222 are **preclusions** to each other. You can only take either 1.
- MLE5238 and EEK5104 are **preclusions** to each other. You can only take either 1.
- MLE5221 and MLE5225 require the **pre-requisite** of MLE5101.
- MLE5223 requires the **pre-requisite** of MLE5001 or equivalent.
- Candidates are allowed to take the courses together with their pre-requisites in the same semester.
- Please make sure to check all the courses for any prerequisites/preclusions before selecting/requesting the courses during ModReg.

<u>Curriculum Requirements</u> (No Specialization):

Requirements	Pass 40 Unit of MSE and MSE recognized courses as per breakdown below:	Remarks
Pass 12 Unit from MLE Core Basket	12	Refer to MLE Core Basket.
2. Pass 20 Unit from MLE Core Basket and Elective Basket	20	Refer to MLE Core Basket and Elective Basket.
3. Pass 8 Unit from the Elective Basket OR NCE Courses OR Credit Transfer	8	Refer to Elective Basket. OR NCE Courses: Level 5000/6000 Courses from other Engineering departments, subjected to availability and approval. NUSRI Students who credit transfer their courses will use up NCE Unit quota. Can transfer a maximum of 2 courses (8 Unit).
Total Unit	40	Required Units for Graduation: Pass 40 Unit Minimum GPA for Graduation: 3.00

<u>Curriculum Requirements</u> (With Specialization in <u>Advanced Materials for Energy and Sustainability</u>):

Require	ements	Pass 40 Units of MSE and MSE recognized courses as per breakdown below:	Remarks
1.	Pass 12 Unit from MLE Core Basket	12	Refer to MLE Core Basket.
2.	Pass 4 Unit from MLE Core Basket and Elective Basket	4	Refer to MLE Core Basket and Elective Basket.
3.	Pass 20 Unit for Specialization (Specialization-related Courses)	20	MLE5101 (Compulsory) (4 Unit) Remaining 16 Unit of courses refer to table from Specialization in Advanced Materials for Energy and Sustainability.
4.	Pass 4 Unit from the Elective Basket OR NCE Course OR Credit Transfer	4	Refer to Elective Basket. OR NCE Courses: Level 5000/6000 Courses from other Engineering departments, subjected to availability and approval. NUSRI Students who credit transfer their courses will use up NCE Unit quota. Can transfer only 1 course to complete this 4 Unit requirement.
Total U	Jnit	40	Required Unit for Graduation: Pass 40 Unit Minimum GPA for Graduation: 3.00

Curriculum Requirements

(With Specialization in Artificial Intelligence for Functional Materials):

Requirements	Pass 40 Units of MSE and MSE recognized courses as per breakdown below:	Remarks
Pass 12 Unit from MLE Core Basket	12	Refer to MLE Core Basket.
2. Pass 4 Unit from MLE Core Group and Elective Basket	4	Refer to MLE Core Basket and Elective Basket.
3. Pass 20 Unit for Specialization (Specialization-related Courses)	20	MLE5217 (Compulsory) (4 Unit) Remaining 16 Unit of courses refer to table from Specialization in Artificial Intelligence for Functional Materials.
4. Pass 4 Unit from the Elective Basket OR NCE Course OR Credit Transfer	4	Refer to Elective Basket. OR NCE Courses: Level 5000/6000 Courses from other Engineering departments, subjected to availability and approval. NUSRI Students who credit transfer their courses will use up NCE Unit quota. Can transfer only 1 course to complete this 4 Unit requirement.
Total Unit	40	Required Unit for Graduation: Pass 40 Unit Minimum GPA for Graduation: 3.00