- Page 1, 2 & 3: Course Lists and Other Important Pointers
- Page 4: Graduation Requirements (No Specialization)
- Page 5: Graduation Requirements (Specialization in Advanced Materials for Energy & Sustainability)
- Page 6: Graduation Requirements (Specialization in Artificial Intelligence for Functional Materials)

MLE Core Basket (Requirements at least 12 Unit)

	MLE5001*	Basics of Structures & Properties of Materials
MLE Core basket	MLE5002*	Materials Characterization
	MLE5101	Thermodynamics for Sustainability
	MLE5102	Mechanical Behaviours of Materials
	MLE5104	Physical Properties of Materials
	MLE5211	Nanomaterials
	MLE5212	Energy Conversion & Storage
	MLE5214	Advances in Polymeric Materials
	MLE5215	Atomistic Modelling of Molecules and Materials
	MLE5216	Introduction to Microscopy for Material Research

^{*} You are strongly advised to take MLE5001 and MLE5002, if you do not have a B.Eng degree in a subject related to MSE.

Elective Basket

MLE5208 Photovoltaic Materials MLE5210 Modelling and Simulation of Materials MLE5213 Magnetic Materials MLE5217 Foundations of Machine Learning for Materials Science MLE5218 Materials Discovery with AI MLE5219 Materials Informatics: The Role of Big Data MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability MLE5224 Degradation of Materials
MLE5210 Modelling and Simulation of Materials MLE5213 Magnetic Materials MLE5217 Foundations of Machine Learning for Materials Science MLE5218 Materials Discovery with Al MLE5219 Materials Informatics: The Role of Big Data MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5213 Magnetic Materials MLE5217 Foundations of Machine Learning for Materials Science MLE5218 Materials Discovery with AI MLE5219 Materials Informatics: The Role of Big Data MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5217 Foundations of Machine Learning for Materials Science MLE5218 Materials Discovery with AI MLE5219 Materials Informatics: The Role of Big Data MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5218 Materials Discovery with AI MLE5219 Materials Informatics: The Role of Big Data MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5219 Materials Informatics: The Role of Big Data MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5220 Finite Element Method in Materials: Basic Concepts and Problem Solvin MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5221 Designing Materials for Renewable Fuels and Clean Water MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5222 Nano and 2D Materials for Energy Applications MLE5223 Rational Materials Design for Sustainability
MLE5223 Rational Materials Design for Sustainability
· · · · · · · · · · · · · · · · · · ·
MLF5224 Degradation of Materials
MEESZET BEGINGATOR OF Materials
MLE5225 Electro-Active Materials for Sustainability
MLE5226 Problem Solving for Future Sustainability Challenges
Elective Basket MLE5228 Superconductivity and Superconducting Devices
MLE5229 Advanced Materials for Microelectronics
MLE5232 Dielectric Materials and Applications
MLE5233 Functional Electronic Devices of Tomorrow
MLE5234 Materials for Optics: From Quantum Light to Nanodevices
MLE5235 Two-Dimensional Materials
MLE5236 Electron Transport in Novel Quantum Materials
MLE5238 Bioelectronics
MLE5247 Soft Materials for Flexible & Wearable Electronics
MLE4207 Microfabrication Process and Technology
MLE6101 Thermodynamics and Kinetics of Materials
MLE6103 Structures of Materials
CE5604 Advanced Concrete Technology
CN5161 Polymer Processing Engineering
CN5251 Membrane Science & Technology
ME5513 Deformation, Fracture and Fatigue of Materials

[^] All 4 Unit unless stated differently.

Specialization in Advanced Materials for Energy and Sustainability***

Advanced Materials for Energy and Sustainability	MLE5101	Thermodynamics for Sustainability ++ (Compulsory)
	MLE5003	Materials Science & Engineering Project (8 Unit)
	MLE5208	Photovoltaic Materials
	MLE5212	Energy Conversion & Storage
	MLE5221	Designing Materials for Renewable Fuels and Clean Water
	MLE5222	Nano and 2D Materials for Energy Applications
	MLE5223	Rational Materials Design for Sustainability
	MLE5224	Degradation of Materials
	MLE5225	Electro-Active Materials for Sustainability
	MLE5226	Problem Solving for Future Sustainability Challenges

- *** To qualify for the Specialization in Advanced Materials for Energy and Sustainability:
- Students must complete a total of 20 units from specialization-related courses.
- This must include the compulsory course: MLE5101 Thermodynamics for Sustainability (4 units).
- The remaining 16 units may be selected from the courses listed in the table above.
- If a student does not fulfill the requirements for the specialization, the completed courses will be reclassified under the appropriate categories (e.g., MLE Core Basket, Elective Basket), where applicable.
- ^ All courses are 4 units unless stated otherwise. Please double-check the unit information on <u>NUSMods</u> used for timetable planning. Note that not all courses are offered every semester or every academic year.

Specialization in Artificial Intelligence for Functional Materials***

MLE5003 Materials Science & Engineering Project (8 Unit) MLE5215/CN5215 Atomistic Modelling of Molecules and Materials	Functional Materials Elective Basket MLE5218 Materials Discovery with Artificial Intelligence	Functional Materials MLE5218 Materials Discovery with Artificial Intelligence	T directional materials	3 3 7 , 7
				, ,

- *** To qualify for Specialization in **Artificial Intelligence for Functional Materials**:
- Students must complete a total of **20 units** of specialized courses.
- This must include the compulsory course: MLE5217 Foundations of Machine Learning for Materials Science † † †.
- The remaining 16 units should be selected from the Artificial Intelligence for Functional Materials basket.

^ All courses are 4 units unless stated otherwise. Please double-check the unit information on NUSMods used for timetable planning. Note that not all courses are offered every semester or every academic year.

Other Important Pointers:

- Part-time students are not allowed to take MLE5003 due to high time commitment and heavy workload.
- MLE5208 and MLE4208 are preclusions to each other. You can only take either 1.
- MLE5211 and MLE4206/MLE5222 are preclusions to each other. You can only take either 1.
- MLE5212 and MLE4210 are preclusions to each other. You can only take either 1.
- MLE5214 and MLE4202 are preclusions to each other. You can only take either 1.
- MLE5221 and MLE4221 are preclusions to each other. You can only take either 1.
- MLE5224 and ME5506 are preclusions to each other. You can only take either 1.
- MLE5228 and PC5218 are preclusions to each other. You can only take either 1.
- MLE5232 and MLE3105 are preclusions to each other. You can only take either 1.
- MLE5234 and MLE4219 are preclusions to each other. You can only take either 1.
- MLE5235 and MLE4220 are preclusions to each other. You can only take either 1.
- MLE5236 and MLE4222 are preclusions to each other. You can only take either 1.
- MLE5238 and EEK5104 are preclusions to each other. You can only take either 1.
- MLE5243 and MLE4230 are preclusions to each other. You can only take either 1.
- MLE5221 and MLE5225 require the pre-requisite of MLE5101.
- MLE5223 requires the pre-requisite of MLE5001 or equivalent.
- Candidates are allowed to take the courses together with their pre-requisites in the same semester.
- Please make sure to check all the courses for any prerequisites/preclusions before selecting/requesting the courses during Course Registration.

Curriculum Requirements

No Specialization):

Require	ments	Pass 40 Unit of MSE and MSE	Remarks
'		recognized courses as per	
		breakdown below:	
1.	Pass 12 Unit from MLE	12	Refer to MLE Core Basket.
	Core Basket		
2.	Pass 20 Unit from MLE	20	Refer to MLE Core Basket and
	Core Basket and		Elective Basket.
	Elective Basket		
_	Pass 8 Unit from the	8	Refer to Elective Basket.
	Elective Basket		0.0
	OR		OR
	UK		NCE Courses: Level 5000/6000
	NCE Courses		Courses from other
	1102 0041303		Engineering departments,
	OR		subjected to availability and
			approval.
	Credit Transfer		
			NUSRI Students who credit
			transfer their courses will use
			up NCE Unit quota. Can
			transfer a maximum of 2
			courses (8 Unit).
Total Ur	ni+	40	Poguired Units for Craduation
10tai Ur	IIL	40	Required Units for Graduation: Pass 40 Unit
			1 033 40 01110
			Minimum GPA for Graduation:
			3.00

Curriculum Requirements

(With Specialization in Advanced Materials for Energy and Sustainability):

Requirements	Pass 40 Units of MSE and MSE recognized courses as per breakdown below:	Remarks
Pass 12 Unit from ML Core Basket	E 12	Refer to MLE Core Basket.
2. Pass 4 Unit from MLE Core Basket and Elective Basket	4	Refer to MLE Core Basket and Elective Basket.
3. Pass 20 Unit for Specialization (Specialization-related Courses)	20	MLE5101 (Compulsory) (4 Unit) Remaining 16 Unit of courses refer to table from Specialization in Advanced Materials for Energy and Sustainability.
4. Pass 4 Unit from the Elective Basket OR NCE Course OR Credit Transfer	4	Refer to Elective Basket. OR NCE Courses: Level 5000/6000 Courses from other Engineering departments, subjected to availability and approval. NUSRI Students who credit transfer their courses will use up NCE Unit quota. Can transfer only 1 course to complete this 4 Unit requirement.
Total Unit	40	Required Unit for Graduation: Pass 40 Unit Minimum GPA for Graduation: 3.00

Curriculum Requirements

(With Specialization in Artificial Intelligence for Functional Materials):

Requirements	Pass 40 Units of MSE and MSE recognized courses as per breakdown below:	Remarks
Pass 12 Unit from MLE Core Basket	12	Refer to MLE Core Basket.
2. Pass 4 Unit from MLE Core Group and Elective Basket	4	Refer to MLE Core Basket and Elective Basket.
3. Pass 20 Unit for Specialization (Specialization-related Courses)	20	MLE5217 (Compulsory) (4 Unit) Remaining 16 Unit of courses refer to table from Specialization in Artificial Intelligence for Functional Materials.
4. Pass 4 Unit from the Elective Basket OR NCE Course OR Credit Transfer	4	Refer to Elective Basket. OR NCE Courses: Level 5000/6000 Courses from other Engineering departments, subjected to availability and approval. NUSRI Students who credit transfer their courses will use up NCE Unit quota. Can transfer only 1 course to complete this 4 Unit requirement.
Total Unit	40	Required Unit for Graduation: Pass 40 Unit Minimum GPA for Graduation: 3.00