Department of Materials Science and Engineering Seminar Series 2025 # RATIONAL DESIGN OF MICROENVIRONMENT FOR CO₂ ELECTROREDUCTION TO MULTICARBON PRODUCTS #### Wei Chaolong Date and time: 14th October 2025 (Tuesday) 3:00pm - 5:00pm **Venue: Seminar room E2-03-32** #### **Abstract** Electrochemical carbon dioxide reduction reaction (CO_2RR) provides a promising pathway for sustainable generation of fuels and chemicals. The preparation of multi-carbon (C_{2+}) products with high energy density via CO_2RR holds great promise but requires overcoming the competition from side reactions. Controlling the local conditions in the microenvironment remains a crucial challenge for enhancing CO_2 conversion rates and minimizing competitive reactions. In our works, several effective strategies for regulating the reaction microenvironment were proposed and discussed. First, a 3D tandem catalyst electrode was prepared. Through this design, the local concentration and CO diffusion path length are increased, promoting the occurrence of C-C coupling. Second, three naturally abundant polysaccharide molecules have been proposed for modifying the surface of Cu catalysts. These biopolymer coatings optimize local CO_2/CO concentration while modulating local water activity and local pH to promote C-C coupling. Third, biopolymers were further used to act as catalyst binders in acidic CO_2RR . Mechanistic studies reveal that those binders can effectively inhibit proton transfer to the electrode surface and induces high local CO_2 concentration and *CO coverage. Finally, Hydroxyapatite (HAP)-based catalysts were prepared and found to have adjustable CO_2RR products selectivity and have good performance under low-concentration CO_2 reduction. These works are expected to provide new insights into the CO_2RR microenvironment, and potentially accelerating progress in this field towards the scale-up of CO_2RR for large-scale CO_2 conversion to sustainable fuels and chemical feedstocks from renewable energy. ### **Biography** Wei Chaolong received his bachelor's degree from Jiangsu University of Science and Technology in 2018 and earned his master's degree from Nanchang University in 2021. He is currently a Ph.D. candidate under the supervision of Assistant Prof. Andrew Barnabas Wong and Prof. He Chunnian (TJU). His research focuses on electrochemical CO₂ reduction reaction. Please join us! **HOST:** Assistant Prof Zhu Di